IMPORTANT NOTES ON CHAPTER 5

These operation instructions describe standard and optional hardware and software configurations. Depending on your order and therefore on the configuration, the content of the screens may differ.

Software

Eight different configuration packages of the LSM Software Release 3.2 are available:

− Software "LSM control" and an additional license
− Software "Physiology evaluation"
− Software “Topography evaluation”
− Software “Macro Recorder and Editor”
− Software "3D for LSM"
− Software “Multiple Time Series”
− Software “Image VisArt”
− Software “Deconvolution”
− Software "StitchArt"

If your configuration does not include the “Physiology evaluation” software package, the following functions are inactive:

− Mean of ROI scan button in Time Series control
− Mean of ROI button in the image display after frame scan

If your configuration does not include the “Topography evaluation” software package, the following functions are inactive:

− Topo button in the image display after acquisition of image stacks

If your configuration does not include the “Macro Recorder and Editor” software package, the following functions are inactive:

− New, Save and Save as buttons in the Macro Control
− Edit, Step, Delete, Editor buttons in the Macro Control
If your configuration does not include the “3D for LSM” software package, the following functions are inactive:
Separate software “3D for LSM”

If your configuration does not include the “Multiple Time Series” software package, the following functions are not available:
− Macro: “Advanced Time Series”

If your configuration does not include the “Image VisArt” software package, the following functions are inactive:
− **3D** button in the image window

If your configuration does not include the “Deconvolution” software package, the following functions are inactive:
− **DCV** button in the image window and in the process main menu

If your configuration does not include the “StitchArt” software package, the following function is not available:
− Macro: “StitchArt”

Hardware

Depending on whether the following hardware components are available or not, the content of the screens may differ:
− HRZ 200 fine focusing stage
− Piezo objective focusing device
− X-Y scanning stage DC 4 × 4 or DC 100 × 90, each with MCU 28
− Depending on the configuration the Scan head equipment may differ in filters, beamsplitters and the number of photomultiplier
− Transmitted-light PMT
− Stands:
 − Axioplan 2 Mot, Axioplan 2 Imaging, Axiovert 100 M, Axiovert 200, Axioskop 2 FS Mot
− Monitordiode
− Programmable AOTF
− Non Descanned Detectors
− META detection module

If your configuration does not include an AxioCam, the following functions are not available:
− **Camera** in the **Config Control** window, **Scan Control** window
Limitations notes for the Release 3.2 (date of issue: 11/2002)

<table>
<thead>
<tr>
<th>No.</th>
<th>Function</th>
<th>Description</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hardware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Hardware</td>
<td>Starting the system new after a longer time, some errors</td>
<td>Starting the system once again</td>
</tr>
<tr>
<td></td>
<td></td>
<td>messages are possible in the error log</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Hardware</td>
<td>For precise measurements over long time ranges</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>constant environmental conditions are necessary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(temperature, humidity)</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Computer</td>
<td>The computer (generation Pentium 3) has problems to</td>
<td>Restart of the computer is necessary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>initialize the operating system sometimes (blue screen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Main menu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Scan & system information</td>
<td>The display of state of Ar-laser is off in the Scan &</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>system information if laser is in standby mode</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Export/Import</td>
<td>Export of 4D series as LSM 4 Tif is handled as z stack</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Export/Import</td>
<td>*.eps – format will exported not correctly for more than</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>one channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acquire – Laser Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Microscope Control</td>
<td>You select another objective for an Axioplan 2</td>
<td>Make sure, that you use not 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Imaging if the LSM software is not active:</td>
<td>objectives for different immersion media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If you start the LSM software now – the last registered</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>objective in the LSM software moves back in the beam</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>path</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acquire – Configuration Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Configuration</td>
<td>The movement of the NDD switching unit (to HBO/HAL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>mirror position) during changes from LSM to VIS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>position will not updated in the configuration control</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Configuration</td>
<td>During visual adjustment with help of HBO/HAL lamp</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the detector gain of NDD detectors must be minimized</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>to avoid decrease of sensitivity of photomultiplier</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Configuration-META-Offline</td>
<td>There is a bug in the demo database: the slider of</td>
<td>Only in offline mode! (ignore it)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lambda stacks shows a wrong spectral range and a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>higher number of pmt elements</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>NDD-Configuration</td>
<td>The switching between NDD and descanned mode does</td>
<td>Use the AOTFfit-macro to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>not work properly, if the laserline attenuation is not</td>
<td>adjust the laserlines</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adjusted</td>
<td></td>
</tr>
</tbody>
</table>
Acquire – Scan Control

<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Issue Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Scan Control</td>
<td>Auto Correction for bidirectional scanning does not work for Lambda stacks</td>
<td>You have to adjust the scanner with a single track before you start your Lambda stack</td>
</tr>
<tr>
<td>13.</td>
<td>Scan Control</td>
<td>Spline scan with more than 4 channels does not work</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>Scan Control</td>
<td>The Gain Slider for monitor diode works upside down</td>
<td>In this case inform your service</td>
</tr>
<tr>
<td>15.</td>
<td>Scan Control</td>
<td>Offset and Amplifier Gain Adjustment does not work for Spot Scan</td>
<td>Adjust the detector before you start the spot series</td>
</tr>
<tr>
<td>16.</td>
<td>Z Settings</td>
<td>The movement of focus for Axioskop 2 FS is too slow for Move First / Mid / Last – therefore it’s possible, that the focus movement is not finished during the image acquisition</td>
<td>Generate a second image if the focus is finished</td>
</tr>
<tr>
<td>17.</td>
<td>Z Settings</td>
<td>Z Values in the LSM software and at the display of Axiovert 200 are different</td>
<td>Ignore it</td>
</tr>
</tbody>
</table>

Acquire – Edit ROI

<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Issue Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Edit ROI</td>
<td>Creation of ROIs with 1 Pixel width is not possible</td>
<td>Minimum is a 2 Pixel width</td>
</tr>
<tr>
<td>19.</td>
<td>Edit ROI</td>
<td>ROIs for xz planes are possible to define but not to scan</td>
<td></td>
</tr>
</tbody>
</table>

Acquire – Time Series Control

<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Issue Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.</td>
<td>Time series</td>
<td>xz-t-series: Roi/mean in the image menu shows Roi-values in xy-coordinates and calculated the area in xy-units and not in xz-units</td>
<td></td>
</tr>
</tbody>
</table>

Acquire – Bleach Control

Macros

<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Issue Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>Multi Time Series – macro</td>
<td>There is no information about bleaching during the measurement</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>AOTF Fit</td>
<td>Sometimes it occurs that after the linearisation the maximum transmission value is only 99% (rounding error) Ignore it</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>AOTF Fit</td>
<td>Sometimes the macro creates wrong calibration files – in this case you get messages in the error log about the laserlines</td>
<td>Adjust it again</td>
</tr>
</tbody>
</table>

Maintain

<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Issue Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.</td>
<td>Objective</td>
<td>In the LSM software you get another information about the number of focus speed for the objectives than in the external program AxioSet (for microscope settings)</td>
<td>Ignore it</td>
</tr>
</tbody>
</table>

Image

<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Issue Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.</td>
<td>Image</td>
<td>At an image with 2k x 2k the µm-scale is too small in Print Preview and in printed Picture.</td>
<td></td>
</tr>
</tbody>
</table>

Tools

<table>
<thead>
<tr>
<th>No.</th>
<th>Section</th>
<th>Issue Description</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.</td>
<td>CLM</td>
<td>CLM for Axioskop 2 FS don’t exist</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Change Filters</td>
<td>Change Filter for Axioskop 2 FS does not exist</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 5 OPERATION IN EXPERT MODE

CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Purpose of this Section and other Operating Manuals</td>
<td>5-9</td>
</tr>
<tr>
<td>5.1.1 Software</td>
<td>5-9</td>
</tr>
<tr>
<td>5.1.2 Windows and Window Elements</td>
<td>5-10</td>
</tr>
<tr>
<td>5.1.3 Convention for the Text in this Manual</td>
<td>5-11</td>
</tr>
<tr>
<td>5.1.4 Backup</td>
<td>5-12</td>
</tr>
<tr>
<td>5.1.5 Software Operation</td>
<td>5-12</td>
</tr>
<tr>
<td>5.2 Switching on the System</td>
<td>5-13</td>
</tr>
<tr>
<td>5.2.1 Log on to WINDOWS NT</td>
<td>5-14</td>
</tr>
<tr>
<td>5.2.2 Switching on the Enterprise UV Laser</td>
<td>5-16</td>
</tr>
<tr>
<td>5.2.3 Starting the LSM 5 Program</td>
<td>5-16</td>
</tr>
<tr>
<td>5.3 Main Menu</td>
<td>5-19</td>
</tr>
<tr>
<td>5.4 File Menu</td>
<td>5-21</td>
</tr>
<tr>
<td>5.4.1 Create New Image Database</td>
<td>5-21</td>
</tr>
<tr>
<td>5.4.2 Open Existing Image Database</td>
<td>5-23</td>
</tr>
<tr>
<td>5.4.3 Image Database window</td>
<td>5-24</td>
</tr>
<tr>
<td>5.4.3.1 Form display mode</td>
<td>5-25</td>
</tr>
<tr>
<td>5.4.3.2 Gallery display mode</td>
<td>5-27</td>
</tr>
<tr>
<td>5.4.3.3 Table display mode</td>
<td>5-28</td>
</tr>
<tr>
<td>5.4.3.4 Load function</td>
<td>5-28</td>
</tr>
<tr>
<td>5.4.3.5 Subset function</td>
<td>5-29</td>
</tr>
<tr>
<td>5.4.3.6 Refresh function</td>
<td>5-29</td>
</tr>
<tr>
<td>5.4.3.7 Copy / Paste function</td>
<td>5-29</td>
</tr>
<tr>
<td>5.4.3.8 Filter function</td>
<td>5-30</td>
</tr>
<tr>
<td>5.4.3.9 On Filter function</td>
<td>5-33</td>
</tr>
<tr>
<td>5.4.3.10 Delete function</td>
<td>5-33</td>
</tr>
<tr>
<td>5.4.4 Save an Image to the Image Database</td>
<td>5-34</td>
</tr>
<tr>
<td>5.4.5 Import of Images</td>
<td>5-38</td>
</tr>
<tr>
<td>5.4.6 Export of Images</td>
<td>5-39</td>
</tr>
<tr>
<td>5.4.7 Multi Print</td>
<td>5-40</td>
</tr>
<tr>
<td>5.4.8 Exit the Expert Mode</td>
<td>5-43</td>
</tr>
</tbody>
</table>
5.5 Acquire Menu ... 5-44
5.5.1 Laser Control... 5-45
 5.5.1.1 Opening / Closing the Laser Control window ... 5-45
 5.5.1.2 Function description ... 5-46
 5.5.1.3 Settings ... 5-46
5.5.2 Microscope Control... 5-48
 5.5.2.1 Open the Microscope Control window ... 5-48
 5.5.2.2 Microscope Control window for Axioplan 2 imaging MOT 5-49
 5.5.2.3 Microscope Control window for Axiovert 200 M .. 5-56
 5.5.2.4 Select the LSM mode ... 5-60
 5.5.2.5 Microscope Control for Axioskop 2 FS MOT ... 5-60
5.5.3 Configuration Control .. 5-61
 5.5.3.1 Open / Close the Configuration Control window .. 5-61
 5.5.3.2 Spectra button .. 5-62
 5.5.3.3 Laserline button .. 5-63
 5.5.3.4 Config button .. 5-64
 5.5.3.5 Settings for Single Track in the Channel Mode .. 5-66
 5.5.3.6 Settings for Multi Track in the Channel Mode .. 5-71
 5.5.3.7 Ratio Settings panel .. 5-76
 5.5.3.8 Settings in the Lambda Mode .. 5-78
 5.5.3.9 Settings in the Online Fingerprinting Mode ... 5-81
 5.5.3.10 Non Descanned panel .. 5-82
 5.5.3.11 Camera Detection panel ... 5-83
5.5.4 Scan Control .. 5-84
 5.5.4.1 Open / Close the Scan Control window ... 5-85
 5.5.4.2 Frame ... 5-87
 5.5.4.3 Line .. 5-107
 5.5.4.4 Spot .. 5-113
 5.5.4.5 Camera control .. 5-114
5.5.5 Edit ROI (Region Of Interest) ... 5-116
 5.5.5.1 Open / Close the Edit ROI window .. 5-116
 5.5.5.2 Function description ... 5-117
5.5.6 Time Series .. 5-120
 5.5.6.1 Open / Close the Time Series Control window ... 5-120
 5.5.6.2 Function description ... 5-121
 5.5.6.3 Time Series of a Frame .. 5-129
 5.5.6.4 Time Series of a frame over Z Stack ... 5-131
 5.5.6.5 Time Series of a frame over a Z Stack over Lambda .. 5-132
 5.5.6.6 Time Series with Mean ROI .. 5-133
5.5.7 Edit Bleach .. 5-135
 5.5.7.1 Open / Close the Edit Bleach window ... 5-135
 5.5.7.2 Function description ... 5-135
5.5.8 Stage ... 5-140
 5.5.8.1 Open / Close the Stage and Focus Control window ... 5-140
 5.5.8.2 Function description ... 5-140
5.5.9 VIS, TV and LSM Buttons ... 5-147
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6</td>
<td>Process Menu</td>
<td>5-148</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Add</td>
<td>5-148</td>
</tr>
<tr>
<td>5.6.1.1</td>
<td>Open / Close the Add window</td>
<td>5-148</td>
</tr>
<tr>
<td>5.6.1.2</td>
<td>Source panel</td>
<td>5-149</td>
</tr>
<tr>
<td>5.6.1.3</td>
<td>Destination panel</td>
<td>5-150</td>
</tr>
<tr>
<td>5.6.1.4</td>
<td>Add panel</td>
<td>5-150</td>
</tr>
<tr>
<td>5.6.1.5</td>
<td>Preview panel</td>
<td>5-151</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Subtract</td>
<td>5-151</td>
</tr>
<tr>
<td>5.6.2.1</td>
<td>Open / Close the Subtract window</td>
<td>5-151</td>
</tr>
<tr>
<td>5.6.2.2</td>
<td>Performance of the Subtract function</td>
<td>5-151</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Multiply</td>
<td>5-152</td>
</tr>
<tr>
<td>5.6.3.1</td>
<td>Open / Close the Multiply window</td>
<td>5-152</td>
</tr>
<tr>
<td>5.6.3.2</td>
<td>Performance of the Multiply function</td>
<td>5-152</td>
</tr>
<tr>
<td>5.6.4</td>
<td>Ratio</td>
<td>5-153</td>
</tr>
<tr>
<td>5.6.4.1</td>
<td>Open / Close the Ratio window</td>
<td>5-153</td>
</tr>
<tr>
<td>5.6.4.2</td>
<td>Performance of the Ratio function</td>
<td>5-153</td>
</tr>
<tr>
<td>5.6.5</td>
<td>Copy (Channel)</td>
<td>5-154</td>
</tr>
<tr>
<td>5.6.5.1</td>
<td>Open / Close the Copy window</td>
<td>5-154</td>
</tr>
<tr>
<td>5.6.5.2</td>
<td>Performance of the Copy function</td>
<td>5-154</td>
</tr>
<tr>
<td>5.6.6</td>
<td>Duplication (Image)</td>
<td>5-154</td>
</tr>
<tr>
<td>5.6.7</td>
<td>Filter</td>
<td>5-155</td>
</tr>
<tr>
<td>5.6.7.1</td>
<td>Open / Close the Filter window</td>
<td>5-155</td>
</tr>
<tr>
<td>5.6.7.2</td>
<td>Image panel</td>
<td>5-155</td>
</tr>
<tr>
<td>5.6.7.3</td>
<td>Filter List and Edit panel</td>
<td>5-156</td>
</tr>
<tr>
<td>5.6.7.4</td>
<td>Preview panel</td>
<td>5-159</td>
</tr>
<tr>
<td>5.6.8</td>
<td>Contrast</td>
<td>5-159</td>
</tr>
<tr>
<td>5.6.9</td>
<td>Interpolate</td>
<td>5-160</td>
</tr>
<tr>
<td>5.6.9.1</td>
<td>Open / Close the Interpolate Brightness and Contrast window</td>
<td>5-160</td>
</tr>
<tr>
<td>5.6.9.2</td>
<td>Image panel</td>
<td>5-160</td>
</tr>
<tr>
<td>5.6.9.3</td>
<td>Interpolation panel</td>
<td>5-161</td>
</tr>
<tr>
<td>5.6.9.4</td>
<td>Preview panel</td>
<td>5-162</td>
</tr>
<tr>
<td>5.6.10</td>
<td>Channel Shift</td>
<td>5-162</td>
</tr>
<tr>
<td>5.6.10.1</td>
<td>Open / Close the Channel Shift window</td>
<td>5-162</td>
</tr>
<tr>
<td>5.6.10.2</td>
<td>Image panel</td>
<td>5-163</td>
</tr>
<tr>
<td>5.6.10.3</td>
<td>Shift panel</td>
<td>5-163</td>
</tr>
<tr>
<td>5.6.10.4</td>
<td>Preview panel</td>
<td>5-163</td>
</tr>
<tr>
<td>5.6.11</td>
<td>Unmix</td>
<td>5-165</td>
</tr>
<tr>
<td>5.6.11.1</td>
<td>Open / Close the Unmix window</td>
<td>5-165</td>
</tr>
<tr>
<td>5.6.11.2</td>
<td>Source panel</td>
<td>5-165</td>
</tr>
<tr>
<td>5.6.11.3</td>
<td>Definition of Channels panel</td>
<td>5-166</td>
</tr>
<tr>
<td>5.6.12</td>
<td>Ion Concentration</td>
<td>5-168</td>
</tr>
<tr>
<td>5.6.13</td>
<td>3D DeConVolution (DCV)</td>
<td>5-174</td>
</tr>
<tr>
<td>5.6.13.1</td>
<td>Background</td>
<td>5-174</td>
</tr>
<tr>
<td>5.6.13.2</td>
<td>Open / Close the 3D Deconvolution window</td>
<td>5-175</td>
</tr>
<tr>
<td>5.6.13.3</td>
<td>Source panel</td>
<td>5-176</td>
</tr>
<tr>
<td>5.6.13.4</td>
<td>Deconvolution panel</td>
<td>5-176</td>
</tr>
</tbody>
</table>
5.7 3D View Menu ... 5-178
 5.7.1 3D DepthCode (Color Coded Depth Map) ... 5-178
 5.7.1.1 Open / Close the Depth Coding window ... 5-178
 5.7.1.2 Source panel ... 5-179
 5.7.1.3 Depth Coding panel ... 5-179
 5.7.1.4 Preview panel .. 5-180
 5.7.2 Projection .. 5-181
 5.7.2.1 Open / Close the Projection window ... 5-181
 5.7.2.2 Source panel ... 5-181
 5.7.2.3 Projection panel .. 5-181
 5.7.2.4 Preview panel .. 5-183
 5.7.3 Stereo ... 5-185
 5.7.3.1 Open / Close the Stereo Images window ... 5-185
 5.7.3.2 Source panel ... 5-185
 5.7.3.3 Stereo Images panel ... 5-185
 5.7.3.4 Preview panel .. 5-187

5.8 Macro Menu .. 5-189
 5.8.1 Macro Language .. 5-189
 5.8.2 Macro Control... 5-190
 5.8.2.1 Open / Close the Macro Control window ... 5-190
 5.8.2.2 Edit Macro function ... 5-190
 5.8.2.3 Assign Macro to Button function ... 5-193
 5.8.2.4 Editing and debugging of macros ... 5-194
 5.8.3 Overview of available Macros (all LSM releases) ... 5-195
 5.8.4 Sample Macros ... 5-198
 5.8.4.1 Distance macro ... 5-198
 5.8.4.2 Profile macro ... 5-198
 5.8.4.3 Bleach macro .. 5-199
 5.8.4.4 MCS macro .. 5-199
 5.8.4.5 Multiple Time Series macro, Rev. 3 .. 5-200
 5.8.4.6 StitchArt macro ... 5-201

5.9 Options Menu ... 5-203
 5.9.1 Export RM Function ... 5-203
 5.9.2 Load RM Function ... 5-204
 5.9.3 Dye DB Function .. 5-205
 5.9.4 Spectra DB Function ... 5-206
 5.9.5 Settings Function .. 5-207
 5.9.5.1 Open / Close the Settings for user : ... window ... 5-207
 5.9.5.2 Autosave ... 5-208
 5.9.5.3 Database General ... 5-209
 5.9.5.4 Database Table Viewer .. 5-210
 5.9.5.5 Database Gallery Viewer .. 5-210
 5.9.5.6 Import / Export ... 5-211
 5.9.5.7 Scan Information ... 5-211
 5.9.5.8 Image Status Display ... 5-212
OPERATION IN EXPERT MODE

 LSM 510
 LSM 510 META
 Carl Zeiss

5.10 Maintain Menu... 5-217
 5.10.1 Scanner.. 5-217
 5.10.1.1 Calibration with Speed 1-10 (electr., unidirectional / bidirectional) and
 Speed 11-13 (electr., only unidirectional) ... 5-217
 5.10.1.2 Calibration with Speed 11-13 (optical, bidirectional) 5-219
 5.10.2 Objective ... 5-224
 5.10.2.1 Objective change... 5-224
 5.10.2.2 Focus speed change.. 5-225
 5.10.2.3 Parfocality Correction .. 5-226
 5.10.3 Pinhole Adjustment.. 5-227
 5.10.3.1 Open / Close the Pinhole & Collimator Control window 5-227
 5.10.3.2 Function description ... 5-228
 5.10.3.3 Pinhole and collimator adjustment .. 5-230
 5.10.4 DSP (Digital Signal Processor) .. 5-232
 5.10.5 Set Find .. 5-233
 5.10.6 Spline .. 5-234
 5.10.7 DSP Trace .. 5-234
 5.10.8 Parameter .. 5-234
 5.10.9 Reboot .. 5-234
 5.10.10 HW/Admin ... 5-234
 5.10.11 Test Grid .. 5-235

5.11 Window Menu ... 5-236
 5.11.1 Full Screen ... 5-236
 5.11.2 Close All Image Display Windows ... 5-236
 5.11.3 Toolbar .. 5-237
 5.11.4 Scan and System Information .. 5-237

5.12 Help Menu .. 5-238
 5.12.1 Help .. 5-238
 5.12.2 About .. 5-238

5.13 Display and Analysis of Images .. 5-239
 5.13.1 Structure of the Image Display Window ... 5-239
 5.13.2 Select - Chan .. 5-242
 5.13.3 Select - Zoom ... 5-245
 5.13.4 Select - Slice ... 5-247
5.13.27.5 Automatic Component Extraction ... 5-349

5.14 Image Optimization .. 5-351
 5.14.1 Single Channel .. 5-351
 5.14.1.1 Requirements .. 5-351
 5.14.1.2 Pinhole / Detector Gain / Ampl. Offset / Ampl. Gain 5-356
 5.14.1.3 Scan Speed, Scan Average and Pixel Depth .. 5-359
 5.14.2 Multiple-channel ... 5-360
 5.14.2.1 Requirements .. 5-360
 5.14.2.2 Image Optimization ... 5-361

5.15 Shut-Down Procedure .. 5-363
 5.15.1 Exiting the LSM Program ... 5-363
 5.15.2 Shut Down the WINDOWS Operating System .. 5-364
 5.15.3 Turning Power Off ... 5-365

5.16 Software and Hardware Options ... 5-366
 5.16.1 Software .. 5-366
 5.16.2 Hardware .. 5-368

5.17 System Configuration Tool .. 5-369

5.18 Courses on "How to Operate the System in an Optimized Way" 5-370
5 OPERATION IN EXPERT MODE

5.1 Purpose of this Section and other Operating Manuals

This section describes the operation of the LSM 510 and LSM 510 META Laser Scanning Microscopes exemplified by typical applications in conjunction with the LSM 5 software and its graphic user environment.

When starting up and operating the microscope system, mind the operating instruction manuals for the Axioplan 2 imaging MOT, Axiovert 200 M and Axioskop 2 FS microscopes:
- B 40-042 e Axioplan 2 imaging MOT, Operating Manual
- B 40-080 e Axiovert 200 M, Operating Manual
- B 40-076 e Axioskop 2 FS MOT, Operating Manual

5.1.1 Software

The LSM 5 software, Version 3.2, controls the microscope, the scanning and laser modules, tools (filters, stand, Axioset) and the image acquisition process, and displays and analyzes the images. It is based on the network-capable graphic 32-bit Microsoft ® WINDOWS NT 4.0 operating system and WINDOWS 2000, respectively.

Portions © Copyright 1996, Microsoft Corporation. All rights reserved.

The installation of the software for the LSM 510 and the basic settings of the equipment components are carried out by Carl Zeiss service staff. This job includes the creation of a customized software configuration in line with the specific hardware components of the customer’s microscope system.

The LSM 5 software is menu-controlled and normally uses its own windows for the activation of the various functions; within these windows, further submenus (panels) can be displayed and removed.

Images of the specimens to be examined, created by scanning, are displayed in separate Image Display windows.

Theoretically, the number of simultaneously opened windows for software operation or image display is unlimited, but should not be too excessive so that an overview is still possible.

Identical functions, e.g. Laser Control, can be performed in several software windows. Changes made by the software are recorded immediately and are automatically transferred to all the other windows concerned.
5.1.2 Windows and Window Elements

<table>
<thead>
<tr>
<th>Window element</th>
<th>Description / Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window (e.g.: Laser Control window)</td>
<td>- Window displayed after activation of a function button (e.g.: Laser button in the toolbar of the Expert Mode).</td>
</tr>
<tr>
<td>Panel (e.g.: Argon panel)</td>
<td>- Limited function range within a window</td>
</tr>
</tbody>
</table>
| **List box or selection box** | - Selection of one of the displayed options at a click of the mouse.
- Open the box by clicking on the arrow button. |
<p>| Input box | - Input of text or numeric values via the keyboard. |
| Scrollbar with slider | - Setting of numbers in the relevant input box by moving the slider or clicking on the arrow buttons or clicking on the slider and moving via the arrow keys of the keyboard. Press the Shift or Ctrl key while clicking on the arrow button to change the numeric values in coarse or fine steps. |</p>
<table>
<thead>
<tr>
<th>Window element</th>
<th>Description / Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔ 408 nm</td>
<td>Check box</td>
</tr>
<tr>
<td></td>
<td>- Activates / deactivates setting options.</td>
</tr>
<tr>
<td></td>
<td>Button</td>
</tr>
<tr>
<td></td>
<td>- Selection / performance of a function via mouse click.</td>
</tr>
</tbody>
</table>

5.1.3 Convention for the Text in this Manual

All the originally used terms of the software interface, e.g.
- names of windows,
- panels,
- input boxes,
- list / selection boxes,
- check boxes,
- menu items,
- names of buttons and
- keyboard keys,

are displayed in **bold letters** to allow easier identification.
5.1.4 Backup

System backup
- A complete backup is contained on the enclosed backup CD-ROM.

User files backup
The following user-generated files need to be included in a backup procedure (keep directory structure):
- Image database files: *.mdb (but not system_configuration_*.mdb
- LSM Image files: *.lsm
- Exported images: *.* (*.Tiff, *.LSM-Tiff, *.BMP, ...)
- Palette files: AIM \ Palette \ *.lut
- Filter files: AIM \ Filter \ *.krn
- Pinhole setting files: AIM \ PH*.pos
- Log files: AIM \ *.log

The following files generated during the system integration should also be included in a backup procedure:
- Parameter file for pinhole setting: AIM \ *.set
- Parameter file after pinhole adjustment: AIM \ *.adj
- Scanner files: AIM \ bin \ *.bin
- Microscope stand database: AIM \ database \ system_configuration_*.mdb

5.1.5 Software Operation

The LSM 5 software can be operated using the mouse, the PC keyboard, or both.
The operation of the mouse and the keyboard is identical to that of the Microsoft ® WINDOWS operating system and is therefore not dealt with in detail in this manual.
If required, see the Microsoft manual or online help for relevant information.
5.2 Switching on the System

The LSM system is turned on with the REMOTE CONTROL switch. This switches all the system components on except for the "Enterprise" UV laser.

If the UV laser shall be used, it can be switched on after the start of the WINDOWS ® NT operating system - but must always be switched on before the LSM 5 software is started.

If REMOTE CONTROL switch is not used, turn the system on with the "I" button on the laser module; in addition, the jumper plug supplied must be connected to the POWER REMOTE CONTROL terminal.

- Turn the REMOTE CONTROL switch to "ON" position (see Fig. 5-1).
 - This switches the entire system on.
 - Microscope and laser will be ready for operation after a short time.
 - Computer boots up.
 - Computer hardware system test runs.

Drive "A" of the computer must not contain a floppy disk.

The monitor shows a dialog box for selection of the operating system version.

![Fig. 5-1 REMOTE CONTROL switch](image1.png)

![Fig. 5-2 Selecting the operating system version](image2.png)
Switching on the System LSM 510

5.1 LSM 510 Log on to WINDOWS NT LSM 510 META

5.2 Log on to WINDOWS NT

5.2.1 Log on to WINDOWS NT

- Confirm the default setting of the "Windows NT Workstation Version 4.00" by pressing the Enter key.
 - WINDOWS NT operating system is being loaded.
 - The Begin Logon window appears on the screen.

- Press the three keys Ctrl, Alt and Del at the same time.
 - The Logon Information window appears on the screen, permitting you to log on to the WINDOWS NT 4.0 operating system.

- Enter the valid user name into the User name text box.
- Enter your password into the Password text box.
After entries, confirm by clicking the **OK** button or **Enter**.
- The WINDOWS NT operating system desktop appears on the screen, showing a number of icons.

![Fig. 5-5 WINDOWS NT operating system desktop](image)
5.2.2 Switching on the Enterprise UV Laser

- If the UV laser is required, switch it on via the toggle switch (5-6/1) of the power supply.
 - It will be ready for operation after a few seconds.

5.2.3 Starting the LSM 5 Program

The LSM 5 software program can be operated in two different modes (with or without connected instrument system). In the on-line mode, the entire program package (image recording and analysis) is available, while only a part of the software functions (image analysis only of already stored images) and no hardware functions are available in the off-line mode. Of course, the off-line mode can also be started when the instrument system is connected. In that case, it is not necessary that the lasers and the microscope are switched on.

- Double-click on the LSM 510 icon on the desktop of WINDOWS to start the LSM 5 software program (see Fig. 5-5).
 - The LSM 510 Switchboard menu appears on the screen (see Fig. 5-8).
The **LSM 510 Switchboard** menu presents the following items for selection:

- **Scan New Images**

 Clicking on this button activates the complete LSM hardware (on-line mode).

- **Use Existing Images**

 This item allows you to process and analyze previously acquired images with the LSM 5 software. In this mode, control of the hardware (laser module ...) is not possible (off-line mode).

 Please note that the **Scan New Images** button must be activated before setting up the Routine Mode or the Expert Mode. Otherwise, the hardware can not be controlled by the LSM 5 software.

- **Start Routine Mode**

 Click on this button if you want to work with pre-configured system settings (typical applications).
OPERATION IN EXPERT MODE
Switching on the System
Carl Zeiss
Starting the LSM 5 Program
LSM 510
LSM 510 META

- **Start Expert Mode**

 Use of this mode requires to be thoroughly familiar with the exact microscope procedures and interrelations.
 You need to set all parameters and functions upon your own decision; this mode therefore provides you with the greatest flexibility of operation.
 It is also possible, however, to call up stored configurations and to modify the parameters / settings if necessary.

![OFF LINE Initialization window](image)

After the start of the **Expert Mode** or the **Routine Mode**, instrument initialization is performed and can be monitored in the **Initialization** window and interrupted with a click on the **Cancel** button, if required.

Depending on the selected option (**Scan New Images** or **Use existing Images**), initialization is performed in the offline or online mode.

Existing images can only be loaded and processed in the **Expert Mode**.

If you want to change from the **Expert Mode** to the **Routine Mode** and vice versa, close all the windows first.

Some printers (for example KODAK Thermo Printer) will produce an error message "hard key not found" in case the printer is not switched on.

Remedy: turn on the printer before starting the LSM 5 software.

Don’t switch off the KODAK printer during the scanning process.
5.3 Main Menu

- Click on the Start Expert Mode button.
 - The LSM 510 - Expert Mode Main menu appears on the screen.

The File button is active automatically, and the submenus selectable in it are shown in the second (bottom) toolbar.

![Fig. 5-10 LSM 510 Switchboard menu](image1)

![Fig. 5-11 LSM 510 - Expert Mode Main menu](image2)

The major functions can be selected in the Main menu of the Expert Mode either via the pulldown menus in the menu bar or via a toolbar which can be displayed or removed as required.

Further subordinate toolbars are available below this toolbar, depending on which button has just been pressed (File, Acquire, etc.).

In the standard setting of the LSM 5 software, the toolbars are automatically displayed after the start of the Expert Mode. However, display of the toolbars can be deactivated via the Window pulldown menu (see Toolbar, page 5-237).

However, since the LSM 5 software is operated more conveniently with the help of the toolbars, only this method of function activation will be described in the following.
The buttons of the **Main** menu (upper toolbar) have the following meanings:

File button
- Open, save, import and export of image data. Printing individual or several images on one page. Ending (Exit) the Expert Mode.

Acquire button
- Calling up and setting the necessary operating parameters. During the preparation for and execution of laser scan image acquisition, this menu item is used as the working dialog between the computer and the microscope.

Process button
- Used for processing of acquired images.

3D View button
- Used for three-dimensional reconstruction.

Macro button
- Makes it possible for the user to store frequently used processes (Macro recorder) and to run them automatically (Macro play). It is possible to write new macros or to edit existing ones.

Options button
- For custom-configuration of software and hardware options, and for exporting system operating sequences to the Routine Mode.
- This menu item enables access to the coloring table.
- In the **Settings for User** window you can specify essential operating modes and informative help, organized by tabs, which have an effect on the user interface.

Maintain button
- Service mode for adjustment and setting of other parameters (e.g. objectives).
5.4 File Menu

The functions of the File menu permit images and the relevant information to be managed and handled completely in a database system. You can also create your own databases. The databases allow images to be stored, loaded and deleted. The additional functions Import and Export permit images from other systems to be made available to the LSM 5 software, or the export of images to other software packages. The Print function allows individual or several images to be arranged on a print page for printout. The Expert Mode can be ended via the Exit function.

- In the Main menu toolbar, click on File.
 - This opens another, subordinate toolbar in the Main menu.

5.4.1 Create New Image Database

The New function permits the creation of a new image database.

- Click on the New button in the File subordinate toolbar of the Main menu.
 - This opens the Create New Database window for the selection of drives, directories and subdirectories.

- Enter the name of the image database you want to create in the File name text box, e.g. Convallaria.

- If you want to create the image database in a certain folder (drive / directory), click on the arrow button next to the Create in box.
 - This opens a drop-down list box showing all folders available for selection.

 To move up one layer of folders, click on the button. Cancel allows you to stop the process.

- If you want to create a new folder, click on the button.
• Click on the **Create** button.
 - This creates the new image database in the selected drive and directory.
 - The database files of the LSM 5 software have the filename extension *.

The **Convallaria.mdb** window appears, presenting the opened image database with 0 of 0 image entries.

![New Database window](image)

Fig. 5-14 New Database window

The new image database can be used to store an acquired or processed image (see **Saving an Image**, page 5-34).

The start settings and the extent of the parameters displayed in the image database window can be changed as required via the **Settings** function in the **Options** subordinate toolbar (see **Settings Function**, page 5-207).
5.4.2 Open Existing Image Database

The Open function allows one or several databases to be opened. The images stored in the database(s) are displayed in thumbnail form; they can be selected and loaded into the Image Display window (see page 5-239).

- Click on the Open button in the File subordinate toolbar of the Main menu.
 - This opens the Open Database window for selection of image databases.
- If you want to load an image database from another folder (drive / directory), click on the arrow button to the right of the Look in box.
 - This opens a drop-down list box in which you can select from all available folders.

The window displays the various image databases with the file extension *.mdb.

- Open the image database by a double click on the respective key icon (e.g. Test-Rel-3_0.mdb), or click on the name of the image database for selection and open it by clicking on the Open button.
 - This opens the image database window, e.g. Test-Rel-3_0.mdb - AIM, in which you can select from a variety of options.
- Click on the button in the title bar of the Database window (see Fig. 5-16) to close this window and make no selection.
5.4.3 Image Database window

The Image Database window allows you to choose one of three different display modes:

- Form
- Gallery
- Table

To choose the required mode, activate the relevant button on the right-hand side of the Image Database window. Loading of images into the Image Display window is possible in every display mode.

The buttons on the right have the following functions:

- **Form button**: Show image database in form display mode.
- **Gallery button**: Show image database in gallery display mode.
- **Table button**: Show image database in table display mode.
- **Load button**: Load image and parameter from image database to Image Display window.
- **Subset button**: Load image and parameter with size reduction from image database to Image Display window.
- **Reuse button**: Reuse scan parameters of the selected image without loading the image.
- **Refresh button**: Refresh Image Database window.
- **Copy button**: Copy selected images to clipboard.
- **Paste button**: Paste images from clipboard into image database.
- **Filter button**: Select or edit search filter from image in the image database.
- **On Filter button**: Switch search filter on or off.
- **Delete button**: Delete selected images from the image database.

The status line, which displays the following current parameters, is at the bottom of the Image Database window:

- **Total**: Display of storage volume of the entire image database
- **Selected**: Display of storage volume of the selected image(s)
- **Current**: Display of storage volume of the current image
- **Clipboard**: Display of storage volume of the image(s) contained in the clipboard
5.4.3.1 Form display mode

When an image database is opened, the Form display mode is used, if no other settings were made under Settings in the Options subordinate toolbar.

In the Options menu in the function Settings it is possible to define
- the start mode of the image database (Form, Gallery, Table)
- the Recordset displayed (first, last, middle) and
- the parameters shown.

The number of the image currently displayed from a set of images is indicated in the Recordset text box.

- From the image database you can display images using the recording slider, or in one of the following ways:
 - show the next image
 - show the previous image
 - show the last image of the image database
 - show the first image of the image database
The currently selected image is displayed as thumbnail in the **Image Display** window on the right. In the case of Z Stacks or time series, the **Slice** slider appears on the screen beside the **Image Display** window.

- You can browse through the series by dragging the **Slice** slider using the mouse.

- Click on the **Load** button to open the selected image.

- A double-click on the **Image Display** window of the database will also load the selected image.

For a description of the toolbars **Select** and **Display** see **Display and Analysis of Images**, page 5-239.

![Opened image displayed in the Image Display window](image)

The name of the image is displayed in the **Name** input box of the **Image Database** window.

- If you want to change the name, click on the input box and enter the new name directly via the keyboard.

- The **Description** and **Notes** input boxes allow you to subsequently add descriptions or special notes on the recorded image via the keyboard.

The acquisition parameter settings of the image are displayed in the **Acquisition** panel.

Changes to an original scan image are automatically recorded in the **Processing** panel under **History**. If, for example, the image was added to the database via the clipboard, the entry **Imported file** will be shown under **History**.

Under **Image Size**, the size of the image in pixels for XY(Z) and the number of used channels are displayed.
5.4.3.2 Gallery display mode

- Click on the Gallery button. All images of the image database, e.g. Test-Rel3_0.mdb, (image series) are shown in a tiled arrangement of thumbnails on the screen.

![Database window (Gallery display mode)](image)

In the Options menu in the function Settings it is possible to define
- the start mode of the image database (Form, Gallery, Table)
- the recordset displayed (first, last, middle) and
- the parameters shown.

- To select one of the images of the database for normal-size presentation, double-click on the desired image. The same can be achieved by clicking on the desired image in the gallery and then clicking on the Load button.
- To select several single images press & hold down the Ctrl-key and select each desired image by a click of the mouse. If several images have been selected, they will all be opened and displayed one after the other.
• To select a number of consecutive images press & hold down the Shift-key, click on the first and the last image to be selected. All the images between these two will also be included in the selection. If several images have been selected, they will all be opened and displayed one after the other.

Selected images are highlighted in blue. Furthermore, the current image selected last receives a patterned frame.

5.4.3.3 Table display mode
• Click on the Table button.
 - All images of the image database, e.g. Test-Rel3_0.mdb, (image series) are shown in Table display mode on the screen.

![Fig. 5-19 Database window (Table display mode)](image)

In the Options menu in the function Settings it is possible to define
 - the start mode of the image database (Form, Gallery, Table)
 - the recordset displayed (first, last, middle) and
 - the parameters shown.

• To select one of the images of the database for normal-size presentation, double-click on the desired line. The same can be achieved by clicking on the desired image in the table and then clicking on the Load button. If several images have been selected, they will all be opened and displayed one after the other.

The selection of several images is performed in the same way as in the Gallery mode, i.e. by pressing the Shift and Ctrl keys.

5.4.3.4 Load function
• Click on the Load button to load the selected images into the Image Display window.
5.4.3.5 Subset function

The Subset function allows images to be loaded with reduced resolution. For this purpose, the image pixels in XY(Z) are reduced. It is also possible to reduce the number of slices (in stacks and time series).

- Click on the Subset button to open the Load with reduction in size window.
- Enter one value each for \(n \) under Pixel (x and y), Pixel (z) and Stack (Time) in the Load every nth panel.
- If required, turn on the Load 12 bit as 8 bit check box.
- Click on the Load button to load the selected images with reduction in size, time slices and stack slices.
- Use Cancel to exit the window without any selection.

5.4.3.6 Refresh function

- Click on the Refresh button to update the Image Database window.

5.4.3.7 Copy / Paste function

- Select the image(s) to be copied. You can use the Shift and Ctrl keys for multiple selection.
- Click on the Copy button.
 - The image(s) is(are) copied to the clipboard and can be inserted in either the same or another database or in other software packages.
- Click on the Paste button to insert the image in the current database.

Identical to the WINDOWS function “Drag & Drop”, one or several images can be copied or moved from one database to another.

The Form mode allows only one image to be copied or moved. The Gallery and Table modes permit several images to be copied or moved simultaneously by multiple selection (keeping the Shift key pressed on clicking).

- Open the relevant databases and position both windows side to side.
- Select the required images (multiple selection by keeping the Shift key pressed) from one database.
• Click on a selected image and keep the mouse button pressed, move the mouse button to the window of the other database (a small rectangular appears near the mouse button) and release the mouse button again (Drag & Drop).

The images are now being moved to the other image database, i.e. they are deleted from the first image database and are then only available in the second image database.

• If the images shall only be copied, also press the Ctrl key during the Drag & Drop procedure (in addition to the rectangular, a "+" sign will also appear near the mouse button).

The images will then be available in both image databases.

5.4.3.8 Filter function

The Filter function permits the display of the database to be modified in such a way that only images with certain features are displayed. This requires the definition and following activation of a relevant filter. Defined filters can be stored, reloaded and also deleted.
Edit panel

The following features can be used as filter functions under **Field**:

- **Name**: Words or row of letters from the name of the image
- **Description**: Words or row of letters from the description of the image
- **Scan Mode**: Scan Mode in which the image was created: Stack or Plane
- **Date / Time**: Date / Time of image acquisition
- **# Planes (z)**: Pixel size of the image in the Z-direction (e.g.: 10)
- **# Lines (y)**: Pixel size of the image in the Y-direction (e.g.: 512)
- **Samples (x)**: Pixel size of the image in the X-direction (e.g.: 512)
- **Z-Step**: Distance of Z Slices in a Z Stack in µm
- **User Name**: Name of the user as entered in the WINDOWS NT login
- **Time series**: Selection of time series

- Open the **Field** list box and select the filter feature (e.g.: **Scan Mode**).

The following operator signs can be activated under **Operator**:

- **=** = equals
- **>** = larger
- **<** = smaller
- **>=** = larger, equals
- **<=** = smaller, equals
- **<>** = smaller, larger

- Select the relevant operator sign (e.g.: **) = **) from the **Operator** list box.

The relevant value or a combination of characters for the filter function (**Field**) is entered under **Value** via the keyboard:

- Enter the relevant text or value (e.g.: **Stack**).
- Click on **Add**. The defined filter feature is displayed in the work box of the **Edit** panel and is therefore activated (e.g.: **Scan Mode = stack**).

If a further filter feature is to be linked with the already defined one, proceed as follows:

- Activate the relevant entries under **Field** and **Operator** and enter a value or text (e.g.: **Name = Convallaria**) under **Value**.
If groups of letters shall be searched, the * sign can be entered for undefined letters (e.g.: if you search for the letter row Conv, enter Conv*).

- Activate the required link type And, Or or Not with a click of the mouse (e.g.: And).
- Click on the Add button. The created filter feature is added to the work box of the Edit panel (e.g.: AND Name = Convallaria).

The Modify button enables you to edit an already defined filter feature:
- Activate the required feature on the work box.
- Make the necessary changes under Field, Operator and Value. Select the link type And, Or or Not.
- Click on Modify. The filter feature will be changed accordingly.

The Delete button enables you to delete a defined filter feature:
- Activate the required feature in the work box.
- Click on Delete. The filter feature will be deleted from the work box.

- Clicking on OK will activate the filter (the entire set of filter features) displayed in the work box and close the Filter window. On Filter is activated right on in the Database window and the filter function will be performed. Only those images which fulfill with the defined filter features will then be displayed. The procedure is interrupted via Cancel.

If required, the filter features displayed in the work box can be stored.
- Click on the Add to List button. The Add to List window will be opened.
- Enter a name for the filter and click on OK. The filter will be included in the Filter List panel.
Filter List panel

All the stored filters are displayed in the Filter List panel and can be activated any time at a click of the mouse.

- Click on the name of the required filter. The linked filter features will be displayed in the work box.

Filters which are no longer needed can be deleted.

- Click on the filter to be deleted in the Filter List panel.
- Click on Remove from List. The filter will be removed.

5.4.3.9 On Filter function

The On Filter function is a toggle switch to activate or deactivate selected filter settings.

5.4.3.10 Delete function

- Select the images to be deleted from the image database.
- Click on the Delete button. Confirm the safety inquiry then displayed by pressing OK.
 - The images and the acquisition parameters will be removed from the image database.
5.4.4 Save an Image to the Image Database

The Save function allows to store an image together with the acquisition parameters (and processing information) to be stored in an image database.

In the Options menu in the function Settings it is possible to define an Autosave function. When Autosave is off, the Save dialogue is the Save As dialogue.

Proceed as follows to save an acquired or an edited / processed image:

- Click on the Save or Save As button in the File subordinate toolbar of the Main menu.
 - The Save Image and Parameter As window appears on the screen.

Save

Stores a newly created or changed image. Newly created images must be given a name and assigned to an existing or new database.

Save As

Stores a previously stored and called up image under a different name. If images are called up and stored again, the original data and time display will be retained.

Clicking on either of these buttons opens the Save As window to create and open an image database.

When the Compress Files check box is activated, the images are stored in a compressed form.

- If necessary, enter a description of the image or comments on it in the appropriate text boxes.
- The default display in the User text box is the name of the logged-on user. If you want, you can enter a different user name for the current image.
- Click on the Open MDB button if you want to open an existing image database in which you want to save the current image. Click on the New MDB button if you want to create a new database to save the current image.
• Enter the name of the image in the **Name** text box, e.g. **Conv-7**.

• Click on the **New MDB** button.
 - This opens the **Create New Database** window in which you can create a new image database.

• Enter the name of the database you want to create in the **File name** text box, e.g. **Projections**.

• If you want to create the image database in a certain folder (drive / directory), click on the arrow button next to the **Create in** box.
 - This opens a drop-down list box showing all folders available for selection.

• After selection, click on the **Create** button.
 - This creates the image database in the selected drive and directory.
Fig. 5-25 Save Image and Parameter As window and Create New Database window

- The **Projections.mdb - AIM** window appears.
Fig. 5-26 Database window

- Click on the **OK** button in the **Save Image and Parameter As** window.
 - The **Projections.mdb - AIM** window now shows the saved image.
 - The **Recordset** box indicates the current number of the image in the image series contained in this database.
- In the **Description** text box you can enter, for example, the configuration of the image.
- In the **Notes** text box you can enter further information about the image content.
5.4.5 Import of Images

The Import function enables the import of externally created images into the Image Display window and the image database of the LSM 5 software.

- Click on the Import button in the File subordinate toolbar of the Main menu.
 - This opens the Import Images window.

- Select the data medium and the directory where the relevant image is contained in the Look in selection box.

- Select the image file by clicking on it.
 - The selected image will be shown for checking in the Image Display window (on the left) together with the relevant details (size, channels, storage volume).

- Select the image type (Single Image or Image Series) in the Image type selection box.

- Click on Open.
 - The image is displayed in a new Image Display window.

All the usual image and movie formats (e.g. .tif, .jpg, .bmp, .pcx, .avi, .mov etc.) are supported.

> When importing series, please make sure to select the first image for the representation of the entire series and to select the Image Series option under Image type.

- Finally, save the image in the desired image database via the Save As function.

- In Processing History this file is marked as imported file.
5.4.6 Export of Images

The Export function allows the export of acquired images and images loaded from the image database.

- Select the image to be exported.
- Click on the Export button in the File subordinate toolbar of the Main menu.
 - This opens the Export Images and Data window.
- Under Save in, select the data medium and the directory to which the image is to be exported.
- Enter a name for the image under File name.
- Select the image format into which the image is to be exported under Image type (Single Image with raw data, Contents of the Image Display window, Full resolution).
- Click on the Save button.
 - The image is stored on the relevant data medium / directory.

All the usual image and movie formats (e.g. .tif, .jpg, .bmp, .pcx, .avi, .mov etc.) are supported.

When stacks or time series are exported, each frame is stored as an individual image.
OPERATION IN EXPERT MODE

5.4.7 Multi Print

This function permits you to arrange several images on one print page and to print them out together.

- Click on the Multi Print button in the File subordinate toolbar of the Main menu.
 - This opens the Print - AIM window.

The main area of the Print – AIM window is used for the display of the print page in the selected paper orientation and for the arrangement of the images to be printed.

The Print toolbar with the following buttons is displayed on the right-hand side of the window:

- **Paste** button: Paste from clipboard to sheet.
- **Delete** button: Delete marked image.
- **Print** button: Start printing.
- **Setup** button: Printer setup.
- **Landsc.** button: Landscape paper orientation.

The following functions can be performed on activation of the buttons in the Overlay toolbar (left-hand side):

Arrow (selection) button: Activation of the mouse button for selection, resizing or movement of an overlay element in the Image Display window.

Resizing: Click on the handle and hold down the mouse button, drag the handle, release the mouse button.

Movement: Click on the line and hold down the mouse button, move the entire element, release the mouse button.

Line button: Creation of a straight line in the Image Display window.
Click and hold down the mouse button, draw a line in any required direction, release the mouse button to end the procedure.
Rectangle button: Creation of a rectangle in the Image Display window.
Click and hold down the mouse button, draw a rectangle in any required direction, release
the mouse button to end the procedure.

Closed polyline button: Creation of a closed polyline figure in the Image Display window.
The first click sets the starting point, each additional click adds a further line, a click with the
right mouse button closes the figure and ends the procedure.

Open polyline button: Creation of an open polyline figure in the Image Display window.
The first click sets the starting point, each additional click adds a further line, a click with the
right mouse button ends the procedure.

Ellipse button: Creation of an ellipse in the Image Display window.
The first click sets the center point, the displayed line permits the determination of the first
dimension, the second click sets the first dimension, the second dimension and rotation
direction can then be determined, the third click sets the second dimension and direction
and ends the procedure.

Closed free-shape curve button: Creation of a closed Bezier figure in the Image Display
window.
The first click sets the starting point, each additional click adds a further line, a click with the
right mouse button closes the figure and ends the procedure.

Open free-shape curve button: Creation of an open Bezier figure in the Image Display
window.
The first click sets the starting point, each additional click adds a further line, a click with the
right mouse button closes the figure and ends the procedure.

Circle button: Creation of a circle in the Image Display window.
Clicking and holding down the mouse button sets the center point, drag the diameter and
release the mouse button to end the procedure.

Line with arrow button: Creation of a line with arrow in the Image Display window.
Click and hold down the mouse button, drag the line in any required direction, release the
mouse button to end the procedure.
A (Text) button: Creation of a text box in the **Image Display** window. After clicking on A, the **Text** window will be displayed, and text can be entered via the keyboard. The **Font ...** button enables you to select the font style and size in the **Font** window. The entered text will be displayed in the left upper corner of the **Image Display** window after clicking on **OK** and can be moved to the required position using the mouse. The **Text** window can also be activated with a double-click on a created text box, and the entered text can be edited subsequently.

Recycle bin button: All the overlay elements and dimensions dragged to the scanned image are deleted. If one overlay element was marked before, this element is now deleted from the scanned image.

Line button: This button allows you to determine the line thickness of the area outline.

Color button: After clicking the **Color** button, the **Color** selection box will be opened. The colors displayed in the **Color** selection box can be assigned to the overlay elements with a click of the mouse. The currently selected color is displayed in the **Color** button. A selected color is automatically assigned to the currently selected overlay element and then to all the elements created afterwards.

To print several images on one page, proceed as follows:

- Use the **Overlay** functions to additionally illustrate the graphics and images to be printed.
- Select the paper orientation by clicking on the **Landsc.** or **Portrait** button.
- Open the image to be printed or select it from the relevant image database.
- Click on the **Copy** button. The image is copied to the clipboard.
- In the **Print - AIM** window, click on the **Paste** button.

The copied image appears in the work area of the **Print - AIM** window. You can click on it with the mouse and move it to any position on the print page or you can adapt the image size.

- Proceed in the same way with all other images you want to print.
- Finally, arrange all images on the print page as required.
- Click on the **Print** button to start the printout.
- Close the **Print - AIM** window by clicking on the **X** button.
5.4.8 Exit the Expert Mode

- Make sure to save all required images in the image database or export them.
- Close all open windows of the LSM program by clicking on the closing icon \(\times \) in the top right corner of each window.
- Click on the Exit button in the File subordinate toolbar of the Main menu.
 - The LSM 510 - Expert Mode Main menu will be closed and the LSM 510 Switchboard menu appears on the screen.
5.5 Acquire Menu

- In the Main menu toolbar, click on Acquire.
 - This opens another, subordinate toolbar in the Main menu.

For preparing and acquiring a scanning image, it is recommended to call up and use the tools of the subordinate toolbar in the following order:

- Conventional microscope setting.
- Laser setting.
- Configuring the optical system for the Scanning Mode.
- Setting of scan parameters.
- EditROI permits up to 99 regions within a frame to be defined and scanned.
- TimeSeries permits user-specific time series to be selected for the scan procedure.
- The EditBleach function is used to bleach a defined, freely selectable area within the scanning field.
- Upon selecting Stage you can set the focus (Z coordinate) and the Z step size between successive slices. If the optional, motorized X/Y-stage is connected, the X and Y-positions of the sample can also be selected.
- The VIS, TV and LSM buttons switch the beam path and indicate which beam path has been set in the binocular tube of the microscope (VIS for viewing, TV for camera observation, LSM for laser operation with monitor observation).

For the scanning process, the LSM button in the toolbar subordinate to the Acquire item must be activated, and the tube slider on the microscope (only Axioplan 2 imaging MOT and Axioskop 2 FS MOT) must be in the LSM position.
5.5.1 Laser Control

The **Lasers** panel shows the types, excitation wavelengths and operating status of all lasers available.

The subordinate laser settings panel shows the relevant and currently set **Maximum Power**, **Wavelength**, **Status**, **Tube Current** and **Output [%]** values of the current laser. The buttons **On**, **Off** and **Standby** permit the current laser to be set in the required status, and the laser intensity (**Output**) can be set using the slider or the input box. The name of the selected laser (Enterprise, Argon, HeNe1 or HeNe2) is displayed in the headline of this setting panel for checking.

5.5.1.1 Opening / Closing the Laser Control window

- Click on the **Laser** button in the **Acquire** subordinate toolbar.
 - This opens the **Laser Control** window, which shows all lasers connected to the system.

When the setting of the required lasers has been finished, the **Laser Control** window can be closed again.

- Click on the **Close** button to close the **Laser Control** window.
 - The **Laser Control** window will be closed.
5.5.1.2 Function description

Lasers panel (upper) List of available lasers, including the display of relevant wavelengths and switching status.
Selection of the laser to be switched on / off and setting of the laser output is performed in the subordinate setting panel.

Laser settings panel (lower) Switch on / off the required laser or set Standby operation.
Display Maximum Power, Wavelength, Status and Tube Current (only Enterprise and Argon) of the relevant laser.
Set the laser output for Enterprise and Argon.

5.5.1.3 Settings

- Click on the desired laser on the (upper) Lasers panel.
 - This highlights the selected laser.

On the lower panel of the Laser Control window, activate the laser as follows:

This applies to the Coherent UV-laser 653 II (Enterprise) and the Ar-multiline laser:

- Click on the Standby button.
 - Wait for the laser to heat up, until the Status ready - Standby message appears (approx. two minutes).
- Click on the On button.
 - Status ready - On appears.
- Use the Output [%] slider to set the laser power which is ideal for the measurement job.

Thus, the laser needed for image acquisition is available.

Argon: Set output between 25 and 100 % of the maximum tube current. Optimum operation is at 8 A (lowest laser noise). However, the laser life is reduced if the laser is constantly operated at 8 A. Therefore, 8 A should be used only if this is absolutely necessary.

Enterprise: Set output between 50 and 100 % of the maximum tube current. Optimum operation is at 20 A (Tube Current; lowest noise). However, the laser life is reduced if the laser is constantly operated at 20 A. Therefore, 20 A should be used only if this is absolutely necessary.
To switch on the Enterprise laser, proceed as follows:

- The internal water cooling LP 5 is running.
- Start the PC, wait until NT system is booted.
- Switch on the power supply of the Enterprise laser, power potentiometer turned to maximum.
- Start the LSM 5 software.

Please bear in mind that a cooling phase of at least 5 minutes is required between switching off of the laser via the software and switching off of the entire system via the REMOTE CONTROL main switch or the Power Supply switch of the Enterprise UV laser.

If the LSM 5 software is already running and you want to use the UV laser, do the following:

- Close the LSM 5 software.
- Switch on the power supply of the Enterprise, power potentiometer turned to maximum.
- Start the LSM 5 software again.

This applies to HeNe Diode lasers:

- After selecting the laser, click on the On button.
 - The required laser for image acquisition is now available.
5.5.2 Microscope Control

The Microscope Control (Micro button) window permits motorized functions (objective and reflector change, condensor, filter and diaphragm settings) and the illumination mode (transmitted or reflected light) of the connected microscope to be controlled via the software.

Without any difference to software control, these microscope functions can also be operated directly on the stand via the relevant controls. In that case, any changes are recorded by the software and displayed in the relevant windows / panels.

If you are using Axioskop 2 FS MOT as the basic microscope, the microscope functions cannot be controlled by the software as the instrument is not motorized except to the z drive. There is no Micro button in case of Axioskop 2 FS MOT.

5.5.2.1 Open the Microscope Control window

- Click on the Micro button.
 - This opens the Microscope Control window on the screen.

After conclusion of the conventional setting of the connected microscope, the Microscope Control window can be closed again.

- Click on the Close button in the Microscope Control window.
 - The Microscope Control window will be closed.
5.5.2.2 Microscope Control window for Axioplan 2 imaging MOT

- Click on the Micro button in the main frame.
- The microscope window opens in the last saved configuration.
- By clicking on the More / Less button the microscope window is displayed with or without detailed microscope beampath panel.

Reflected Light button The shutter is switched on and off.
Reflector button Push and click reflector cube can be selected via graphical pop-up menu.
Objective button Objective can be selected via graphical pop-up menu.
Condensor button Numerical aperture of the condensor is set via input box or slider. Turret position selected from graphical pop-up menu (only for motorized condensors). By clicking on the Close button the Condensor frame is closed.
Field Stop button Opening of luminous-field diaphragm (transmitted light) can be set via input box or slider. By clicking on the Close button the Field Stop frame is closed.
Filter button Transmission values for attenuation filter (transmitted light) is set via input box or slider for the front or rear filter wheel in accordance with the available filter steps. By clicking on the Close button the Filter frame is closed.
Transmitted Light button Transmitted light is switched on / off via ON button in the Transmitted Light frame, setting of light intensity can be varied via input box or slider. 3200 K color temperature for photo documentation can be switched on via 3200 K button in the Transmitted Light frame. The transmission light control potentiometer on the stand is disabled via the Remote button. By clicking on the Close button the Transmitted Light frame is closed.
Recording of microscope settings

The upper part of the Axioplan Control window shows the recording functionality of microscope configurations. Complete microscope configurations can be created and applied.

The Store button permits existing microscope configurations to be stored under any name.

The Apply button permits existing stored microscope configurations to be loaded.

The Delete button permits existing microscope configurations to be deleted.

The Assign button permits the assignment of a microscope configuration to a button.

Load a microscope configuration

An existing microscope configuration can be loaded as follows:

- Click on the arrow button.
 - This opens a list box of all stored microscope configurations.
- Click on the desired microscope configuration.
 - The selected microscope configuration is shown in the first line of the Microscope Configurations list box.
- Click on the Apply button.
- Click on the Close button to close the microscope window.

Only those microscope settings which are encoded and motorized can be reloaded.
Store a microscope configuration
A newly created or changed microscope configuration can be stored under a new name as follows:
• Enter the desired name in the first line of the microscope setting list box.
• Click on the Store button.
• The actual configuration with the chosen name is added to the microscope settings list.
• Click on the Close button to close the microscope window.

Delete a microscope configuration
A no longer required microscope configuration can be deleted as follows:
• Select the microscope configuration to be deleted from the microscope configuration list box.
• Click on the Delete button.
• Click on the Close button to close the microscope window.

Assignment of a microscope configuration to a button
A microscope configuration can be assigned to a button as follows:
• Click on the Assign button.
• This opens the Assign-Microscope-Settings-To-Button window.
• Click on the arrow in the Button list box and select a button out of the list.
• With increasing numbers the buttons are arranged from the upper to the lower row from left-hand side to right-hand side.
• Click on the arrow in the Settings list box and select a microscope configuration.
• Click on the Apply button. A new button with the name of the selected microscope configuration has been created.
• Click on the Close button to close the Assign-Microscope-Settings-To-Button window.
• Click on the Close button to close the microscope window.
For the conventional setting of the Axioplan 2 imaging MOT, proceed as follows:

- Click on the **VIS** button in the **Acquire** subordinate toolbar.
- Push in the tube slider (5-34/8) on the microscope tube as far as it will go.
 - This opens the light path for specimen observation through the eyepieces.
- Place specimen on microscope stage.
 - The cover slip must be facing up.
- Click on the **Micro** button to open the **Microscope Control** window.
- Via the **Objective** button, select the required objective as follows:
 - Open the graphical pop-up menu by clicking on the **Objective** button.
 - Click on the objective you want to select.
 - The selected objective will automatically move into the beam path.
- Use the focusing drive (5-34/5) to focus the required object plane.
- Select specimen detail by moving the stage in X and Y using the XY stage fine motion control (5-34/6 and 7).

(1) **Transmitted-light observation**

- Set the reflector turret position to **None** and click on the **On** button for transmitted light.
- Actuate the shutter switch (5-34/4) to open the light path of the halogen lamp, and control its brightness with the potentiometer (5-34/3) or the **Intensity %** slider in the **Transmitted Light** panel.
- Set the required transmission value of the gray filters in the **Filter** frame.
- Set the condensor and the luminous-field diaphragm for KÖHLER illumination.

With **Transmitted Light** activated (On), the halogen lamp is automatically occluded in the laser scanning mode.

Please bear in mind that the light intensity does not automatically correspond to 0 % when **Light Remote** is deactivated. The microscope setting (light intensity) of the last session, which was not remote-controlled, is restored on exit of the program (depending on the position of the knob on the stand).
(2) **Reflected-light observation (Epi-fluorescence)**

- Turn on the HBO 100 W power supply with switch (5-34/2).
- Click on the reflected light button. The shutter opens.
- Pull out the occluding slider (5-34/1) to a light-passing position; actuate shutter switch (5-34/4) for reflected light if it is in transmitted-light position.

To avoid excessive bleaching of biological samples, expose the specimen to the minimum possible irradiation, i.e. keep the irradiation time as short as possible. For this, insert a filter slider featuring the relevant attenuation into the reflected-light beam path.

- By clicking on the reflector turret button, select the reflector module (filter sets) to suit the type of fluorescence excitation. Proceed as follows:
- Click on the reflector turret button.
- Click on the desired reflector module.
 - The reflector turret moves the selected reflector module into the beam path.
The FITC filter set consists of an excitation filter for the 450 - 490 nm spectral range, an FT color splitter for 510 nm and an LP long pass filter, which passes emission light wavelengths greater than 510 nm (FSET 09 Δ FITC, FSET 15 Δ Rhodamine, FSET 01 Δ DAPI).

Other filter sets:

DAPI:
- BP 365 FSET01
- FT 395
- LP 397

Rhodamin:
- BP 546 FSET15
- FT 580
- LP 590

The filter sets described in this section are included in the standard configuration, but other sets are available on request.

If the AttoArc2 HBO lamp for reflected-light illumination is integrated in the system, the **Reflected Light HBO** frame is opened by clicking on the **Reflected Light** button.

- **Shutter** button: Opens / closes the shutter for reflected light.
- **Level 1/2** buttons: By clicking on the buttons it can be switched between two light intensity levels.
The aperture setting on the condensor of the Axioplan 2 imaging MOT is performed in fixed steps.
5.5.2.3 Microscope Control window for Axiovert 200 M

Transmitted Light button Transmitted light is switched on / off via **ON** button in the **Transmitted Light** frame, setting of light intensity can be varied via input box or slider. 3200 K color temperature for photo documentation can be switched on via **3200 K** button in the Transmitted Light frame. The transmission light control potentiometer on the stand is disabled via the **Remote** button. By clicking on the **Close** button the **Transmitted Light** frame is closed.

Condensor button Numerical aperture of the condensor is set via input box or slider. Turret position selected from graphical pop-up menu (only for motorized condensors). By clicking on the **Close** button the **Condensor** frame is closed.

Objective button Objective can be selected via graphical pop-up menu.

Reflector button Push and click, reflector cube can be selected via graphical pop-up menu.

Tube Lens button Push and click, tube lens can be selected via graphical pop-up menu.

Reflected Light button The shutter is switched on and off.

Recording of microscope settings

The upper part of the **Axiovert Control** window shows the recording functionality of microscope configurations.

Complete microscope configurations can be created and applied.

The **Store** button permits existing microscope configurations to be stored under any name.

The **Apply** button permits existing stored microscope configurations to be loaded.

The **Delete** button permits existing microscope configurations to be deleted.

The **Assign** button permits the assignment of a microscope configuration to a button.

Load a microscope configuration

An existing microscope configuration can be loaded as follows:

- Click on the arrow button.
 - This opens a list box of all stored microscope configurations.
• Browse through the microscope configurations by clicking, or use the scroll bar at the side of the list box.

• Click on the desired microscope configuration.
 - The selected microscope configuration is shown in the first line of the Microscope Configurations list box.

• Click on the Apply button.

• Click on the Close button to close the microscope window.

Only those microscope settings which are encoded and motorized can be reloaded.

Store a microscope configuration
A newly created or changed microscope configuration can be stored under a new name as follows:

• Enter the desired name in the first line of the microscope setting list box.

• Click on the Store button.

• The actual configuration with the chosen name is added to the microscope settings list.

• Click on the Close button to close the microscope window.

Delete a microscope configuration
A no longer required microscope configuration can be deleted as follows:

• Select the microscope configuration to be deleted from the microscope configuration list box.

• Click on the Delete button.

• Click on the Close button to close the microscope window.

Assignment of a microscope configuration to a button
A microscope configuration can be assigned to a button as follows:

• Click on the Assign button.

• This opens the Assign-Microscope-Settings-To-Button window.

• Click on the arrow in the Button list box and select a button out of the list.

 With increasing numbers the buttons are arranged from the upper to the lower row from left-hand side to right-hand side.

• Click on the arrow in the Settings list box and select a microscope configuration.
• Click on the **Apply** button. A new button with the name of the selected microscope configuration has been created.

• Click on the **Close** button to close the **Assign-Microscope-Settings-To-Button** window.

• Click on the **Close** button to close the microscope window.

For the conventional setting of the Axiovert 200 M, proceed as follows:

• Click on the **VIS** button in the **Acquire** subordinate toolbar.

• Place specimen on microscope stage.
 - The cover slip must be facing down.

• In the **Objective** list box, select the required objective.

• Use the focusing drive (5-36/4) to focus the required specimen plane.

• Select specimen detail by moving the stage in X and Y via the XY stage fine motion control (5-36/3 and 2).

(1) **Transmitted-light observation**

• Click on the **Reflected Light** button and set the shutter to the **Closed** position.

• Click on the **Transmitted light** button. Click on the **On** button in the **Transmitted Light** panel and set the transmitted light intensity via the slider or click on **3200 K**. Click on **Close** to close the **Transmitted Light** panel.

• Click on the **Condensor** button and set the aperture via the slider in the **Condensor** panel. Set the filter in the **Filter** selection box. Click on **Close**.

• Click on the **Objective** button and select the objective by clicking on it.

• Click on the **Reflector** button and select the **None**.

(2) **Reflected-light observation (Epi-fluorescence)**

• Turn on the HBO 50 power supply switch (5-36/1).

• Click on the **Reflected Light** button and set the shutter in the **Open** position.

• Click on the **Reflector** button and select the desired filter set by clicking on it.
 - The filter is automatically moved into the beam path to enable observation in epi-fluorescence.

• Click on the **Tube Lens** button and select the tube lens.

• Click on the **Objective** button and select the objective.
Fig. 5-36 LSM 510 with Axiovert 200 M BP

1 Switch, HBO 50 power supply
2 Stage fine motion control, X
3 Stage fine motion control, Y
4 Focusing drive
5.5.2.4 Select the LSM mode

Switchover to the scanning mode is then required.

- Click on the LSM button in the Acquire subordinate toolbar.
- Set VIS slider (only Axioplan 2 imaging MOT) to the LSM position.

5.5.2.5 Microscope Control for Axioskop 2 FS MOT

For setting the Axioskop 2 FS MOT, proceed in the same way as with Axioplan 2 imaging MOT and Axiovert 200 M.

Since the Axioskop 2 FS MOT is not motorized (except the external Z drive), all microscope settings have to be made manually.

Especially, the change of objectives is made manually. The used objective must be set in the Scan Control window.
5.5.3 Configuration Control

The setting of the beam path for the scanning procedure, i.e. the definition of channels (single detector, META detector) and tracks and the setting of the Acousto-Optical Tunable Filters (AOTF) of the various laser lines is performed in the Configuration Control window.

A track is:
- a set of parameters for the detection channels and for illumination (wavelength and intensity)
- scanned simultaneously and identified and handled by the system with one name

The Configuration Control window has a different appearance, depending on which selection button has been activated (Channel mode or Lambda Mode). The Lambda Mode is only available if the system contains the META detector. Only in the Channel Mode a subordinate toolbar exist which contains a Single Track, Multi Track or Ratio button. In the Channel mode use the Single Track and Multi Track buttons to toggle between the two image acquisition modes single tracking and multitracking. In addition, you can activate the Ratio button for the activation of up to two Ratio channels.

Performed settings can be stored as Track Configurations for single tracking. The number of traditional channels to be defined in one track is limited to 8 (incl. monitor diode, transmission and ratio channels), depending on the configuration. The number of channels to be defined in one track for LSM 510 META systems is 8 (including monitor diode and transmission detector). Furthermore, 2 ratio channels can be used.

In case the number of available channels is not sufficient for the scanning procedure, further tracks can be added and configured. The combination of these tracks can also be stored as Recording Configurations for multitracking. A recording configuration may contain the maximum of 4 tracks. Regardless of the number of included tracks, the maximum of 8 channels (incl. monitor diode, transmission and ratio channels) can be used in a recording configuration in multitracking.

If several tracks have been activated, they are processed one after the other during the scan procedure.

If the maximum number of channels to be used in a Single Track or a Multi Track has already been achieved, it is no longer possible to add further channels or tracks.

If a second track or further tracks are used, the scan parameters can be changed as required. This avoids “cross-talk” from one channel to another when different tracks are used.
5.5.3.1 Open / Close the Configuration Control window

- Click on the **Config** button in the **Acquire** subordinate toolbar.
 - The **Configuration Control** window is opened with the display last selected.

- The **Beam Path and Channel Assignment** panel differs according to the hardware configuration supplied.

- Click on the **Close** button to quit the **Configuration Control** window.

5.5.3.2 Spectra button

The **Spectra** button opens the **Detection Spectra & Laser Lines** window. This window displays the laser wavelengths activated for excitation (as colored vertical lines) and the activated channels (as colored horizontal bars).

The color of the bar corresponds to the one assigned to the relevant channel. Non-active channels receive a gray bar over the entire spectral range.

The length and position of the bar corresponds to the emitted spectral range which is overlaid with the filter and beam splitters selected in the **Configuration Control** window or number of selected channels of the META detector.

- Click on the **Spectra** button to open the **Detection Spectra & Laser Lines** window and to check the settings you made. The window is closed via **Close**.

All amendments made in the **Configuration Control** or **Laser Control** window are updated on-line in the **Detection Spectra & Laser Lines** window.

- A click on the **Laser** button enables you to open the **Laser Control** window, switch lasers on and off, if required, and control the laser output.
5.5.3.3 Laserline button

The Laserline button opens the Wavelength Switch Control window.

If more than 6 excitation laser lines (wavelengths) are available from the connected lasers, these can no longer be completely displayed in the Line Active column of the Excitation window. In such a case, the required laser lines (if not displayed) must be allocated.

- For this purpose, click on the Laser Line button. The Wavelength Switch Control window is opened.
- Select the required laser lines in the selection boxes and confirm the selection with a click on Store.
- Click on the Close button of the Wavelength Switch Control window (Close is used to close the window without accepting the changes).

The laser lines are now available in the Line active column of the Excitation window.

If the laser lines 351 nm, 364 nm and / or 405 nm have been switched on via the relevant lasers, they are automatically entered into the Line Active column as non switchable.

- Click on the Close button to conclude the laser settings procedure.

![Wavelength Switch Control window](image)
5.5.3.4 Config button

The Config button permits existing track configurations to be loaded, stored under any name, or deleted.

(1) Load a track configuration

A configuration stored in the system, whether factory-supplied or user-created, can be accepted or selected for active operation as follows:

- Click on the Config button, the Track Configurations window appears on the screen.

On the Store / Apply Configuration panel, click on the arrow button ▶.

- This opens a list box of all stored track configurations.

- Browse through the configurations by clicking, or use the scroll bar at the side of the list box.

- Click on the desired configuration.

- The selected configuration is shown in the first line of the Configurations list box (e.g.: FITC/Rhod).

- Click on the Apply button.

- This results in the stored instrument parameters being taken over for active use. The track configuration selected before is overwritten.

The optical diagram of the configuration selected appears on the Beam Path and Channel Assignment panel. The newly loaded track has been automatically activated for the scanning procedure. The Track Configurations window is closed automatically.

In the Options menu in the function Settings it is possible to define the parameters to be used when applying a track configuration.
(2) **Store a track configuration**

A newly created or changed track configuration can be stored under a new name as follows:

- Click on the **Config** button, the **Track Configurations** window appears on the screen.
- Enter the desired name in the first line of the **Configurations** list box.
- Click on the **Store** button.
- Close the window by clicking on **Close**.

During storage via the **Store/Apply** function, all the data of the **Beam Path and Channel Assignment** and the Detector Gain, Ampl. Offset, Ampl. Gain and Data Depth (8 / 12 Bit) scan parameters of the current track (single tracking) will be stored.

(3) **Delete a track configuration**

A no longer required track configuration can be deleted as follows:

- Click on the **Config** button, the **Track Configurations** window appears on the screen.
- Select the configuration to be deleted from the **Configurations** list box.
- Click on the **Delete** button.
- Close the window by clicking on **Close**.
5.5.3.5 Settings for Single Track in the Channel Mode

The settings of the beam path for the scanning procedure with regard to the main dichroic beam splitter (HFT), secondary dichroic beam splitter (NFT), emission filters (EM) to be used and the assignment of channels, excitation wavelengths and laser intensities are performed in the Beam Path and Channel Assignment panel.

The setting can be performed manually or by using existing track configurations.

- Click on the Single Track button, unless it has already been activated.
 - The Configuration Control window for single tracking is displayed.
- Click on the Descanned button, unless it has already been activated.

(1) Beam Path and Channel Assignment panel

The Beam Path and Channel Assignment panel displays the selected track configuration which is used for the scan procedure.

You can change the settings of this panel using the following function elements.

- Excitation
 Activation / deactivation of the excitation wavelengths (check box) and setting of excitation intensities (slider). Open the Laser Control window via the Laser button.

- Main dichroic beam splitter
 Selection of the main dichroic beam splitter (HFT) or secondary dichroic beam splitter (NFT) position through selection from the relevant list box.

- Emission filter
 Selection of an emission filter through selection from the relevant list box.

- Channel
 Activation / deactivation of the selected channel (Ch 1-4, monitor diode ChM, META detectors ChS1-8, transmission ChD) for the scanning procedure by assigning an existing color icon or defining a new one. Deactivation of the channel via deactivation of the check box.

Fiber Out
The Fiber Out port of the LSM 510 permits connection of a MCS or another detector. The connected MCS is operated via a macro which can be started via the Macro function (see page 5-189ff).
For the configuration of the beam path, please refer to the application-specific configurations depending on the used dyes and markers and the existing instrument configuration (e.g.: module LSM 510 - config. 16) listed in the annex.

The assignment of the numbered emission filters (1-4), NFT secondary dichroic beam splitters (1-3) and HFT main dichroic beam splitters in the Beam Path and Channel Assignment panel is shown in the Configuration Control window (Fig. 5-42). The numbers of the emission filters correspond to those of the channels lying behind (PMT photomultipliers).

(2) Beam path - HFT main dichroic beam splitters and NFT secondary dichroic beam splitters

- On the Beam Path and Channel Assignment panel, click on the HFT main dichroic beam splitters (see Fig. 5-42).
 - This opens a graphical pop-up window of all beam splitters available.
- To select a beam splitter, click on the respective line of the list.
 - The selected beam splitter moves into the beam path.
- Proceed accordingly to configure the NFT secondary dichroic beam splitters.
(3) **Beam path - Emission filter**

- On the **Beam Path and Channel Assignment** panel, click on the emission filter symbol.
 - This opens a graphical pop-up window of all available emission filters (e.g. BP for band pass, or LP for long pass) with their wavelengths.
- To select an emission filter, click on the respective filter in the pop-up window.
 - The emission filter selected moves into the beam path in front of the PMT photomultiplier.
- Depending on the application, it may be necessary to insert additional mirrors, secondary dichroic beam splitters or neutral glass filters between the HFT main dichroic beam splitter and the PMT photomultiplier. To select these components, click on the respective symbols.

For channels 1 and 2, it is possible to change the filters directly on the LSM 510 scan module (see Annex: Filter change in the beam path of channels 1 and 2).
(4) Beam path - Activation / Deactivation of Channels and Channel Color Assignment

- On the Beam Path and Channel Assignment panel, click on the channel symbols, e.g.
 - This opens the Channel Color Selection window on the Beam Path and Channel Assignment panel.

- Click on the desired color bar.
 This changes the color of the channel symbol.

- To close the Channel Color Selection box, click on the Close button.

Further colors for the corresponding channel can be produced as follows:

- Clicking on the Define button will open a further Channel Colors window.
 All the available colors are shown as buttons in the Current Set of Channel Colors panel.

- Via a reticule in the Define Color panel, any desired color can be produced.

- Clicking on the Add button allows the color to be used for further channel coloring.

- Choose the desired color with the reticule (the reticule is in the left corner at the bottom of the color range).

- Define the brightness by use of the scroll bar.

- Use the Add button to add the color to the color range.

- To delete a defined color, click on the relevant color button and then on the Remove button.

- Standard colors (black for OFF, red, green, blue and white) cannot be removed.

- Click on the Close button to close the Channel Colors window.
 - Newly defined colors are accepted and displayed in the Channel Color Selection window. They can then be used in the same way as standard colors.
The PMT1 photomultiplier is activated / deactivated by the check box.

- Proceed in the same way for the other PMT photomultipliers.

The symbols for the transmitted-light PMT photomultiplier (ChD Transmission) and monitor diode (ChM) can be activated in the same way as the photomultipliers of channels 1 to 4. The use of the monitor diode function is described in detail in the annex of this manual.

When changing from the NFT 1 secondary dichroic beam splitter, the appropriate setting of the NFT 3 secondary dichroic beam splitter is performed automatically.

(5) Beam path - Laser attenuation

- On the Beam Path and Channel Assignment panel, click on the Excitation button.
 - This opens a dialog box of all available lasers with their wavelengths and their usable Acousto-Optical Tunable Filters (AOTF) attenuation.
 - To select the desired laser line, activate the check box for Line Active.
 - Use the Transmission [%] slider to set the utilisable laser intensity (recommendation: start at 50%).
 - The transmittance of the Acousto-Optical Tunable Filter (AOTF) changes accordingly.

- This allows you to adapt the laser intensity very sensitively to the job. Activate the check box for Line Active.
 - This activates the selected laser power for use. This is indicated by the Laser Power displaying lamps (status display green / gray).

By clicking on the Excitation button you can check at any time which lasers are available for active operation.

If you deactivate Line Active, the laser wavelengths for Enterprise and argon lasers are deselected by means of the Acousto-Optical Tunable Filters (AOTF), i.e. these lasers change into standby status.

If you interrupt your work with the LSM for a break, it is recommended not to switch the Enterprise and argon lasers off by hardware action, but to put them into standby status as described.

Excitation filters, emission filters, HFT main dichroic beam splitters and NFT secondary dichroic beam splitters can be switched online, channels (PMT photomultipliers) only off-line.
5.5.3.6 Settings for Multi Track in the Channel Mode

The Multi Track function permit several tracks to be defined as one configuration (Recording Configuration) for the scan procedure, to be stored under any name, reloaded or deleted.

The maximum of four tracks with up to 8 channels can be defined simultaneously and then scanned one after the other. Each track is a separate unit and can be configured independently of the other tracks with regard to channels, Acousto-Optical Tunable Filters (AOTF), emission filters and dichroic beam splitters.

- Click on the Multi Track button.
 - The Configuration Control window for multitracking appears, which means that the List of Tracks panel is additionally displayed.

The tracks required for multitracking can either be configured manually one after the other (identical to single tracking) and then stored as recording configuration, or already existing recording configurations can be used and changed as required.

It is also possible to load already stored track configurations (single tracking) in a recording configuration.

(1) Beam Path and Channel Assignment panel

The Beam Path and Channel Assignment panel displays the track configuration of the track currently selected in the List of Tracks panel (highlighted in blue or gray).

The settings for this panel are performed separately for each track, in the same way as for single tracking. To do this, select the track to be configured from the List of Tracks panel (see the following description of the List of Tracks panel).
In the **List of Tracks** panel, the available tracks are displayed with names, activated channels and laser lines.

The **Line**, **Frame** and **Fast Switch** buttons are used to determine in which way switching between tracks is made during the scan procedure.

Furthermore, the sequence of tracks to be processed can be changed for the scan procedure.

The **Add Track**, **Store/Apply Single Track** and **Remove** buttons permit individual tracks to be added, saved or deleted.

In addition, this panel is used to activate / deactivate the tracks for the scan procedure.

- To activate or deactivate one or several tracks for the scan procedure, activate / deactivate the check box of the relevant tracks.

The configuration of the selected track is displayed in the **Beam Path and Channel Assignment - ...** panel.

- To select a track for the display of the beam path configuration, click on its name.
 - The selected track is highlighted in gray or blue.

When you switch from multitracking to single tracking, the track selected in the multitracking mode (highlighted in blue or gray) is always transferred and automatically activated for the scan procedure. All other tracks are deactivated, and they remain deactivated when you switch back to the multitracking mode afterwards.
The following functions are available in the List of Tracks panel:

Modes

Switch tracks after each **Line** button

Tracks are switched during scanning line by line. The following settings can be changed between tracks: Acousto-Optical Tunable Filters (AOTF) and the Amplifier Offset.

Switch tracks after each **Frame** button

Tracks are switched during scanning frame by frame. The following settings can be changed between tracks: Acousto-Optical Tunable Filters (AOTF), the emission filters, the dichroic beam splitters, the channels, the settings of the pinhole position in XY(Z)-direction and pinhole diameter and Gain and Amplifier Offset.

Frame Fast button

The scanning procedure can be made faster. Only the Acousto-Optical Tunable Filters (AOTF) for the selected laser line and the Amplifier Offset are switched, and no other hardware components. The tracks are all matched to the current track with regard to emission filter, dichroic beam splitter, setting of Detector Gain, pinhole position and diameter. When **Line** button is selected, the same rules apply as for **Frame Fast**.

Settings

Add Track button

An additional track is added to the configuration list. The maximum of four tracks can be added. One track each with basic configuration is added, i.e.: one Ch 1 channel is activated, all laser lines are switched off, emission filters and dichroic beam splitters are set in accordance with the configuration last used.

Remove button

The single track previously marked in the List of Tracks panel in the Name column is deleted.

Store/Apply button

Opens the Track Configurations window. A selected track defined in a Recording Configuration can also be stored as a single track for single tracking applications. Also, it’s possible to load a single track in a multitracking configuration.

A click on this arrow button will move the selected track (highlighted in blue) one position upwards in the list box.

A click on this arrow button will move the selected track (highlighted in blue) one position downwards in the list box.
When adding new tracks, the following sequence should be followed:

- Add a track by clicking on the **Add Track** button.
- Determine the configuration of the track in the **Beam Path and Channel Assignment** panel or select an existing one via the **Store/Apply Single Track** button of the **List of Tracks** panel.
- Store the name of a track configuration defined via the **Store/Apply** button of the **List of Tracks** panel. The new track name will then be displayed in the **List of Tracks** panel.

If this way of storing is performed, the created track will also be available as a single track and can therefore also be activated individually.

- Add the next track via the **Add Track** button and then configure and store it again.

The name of a track can also be changed directly in the **List of Tracks** panel. In that case, however, the edited track is not available as a single track configuration, but only within the recording configuration.

To edit a track name within **Recording Configurations**, proceed as follows:

- To select the track, click on the relevant track name in the **List of Tracks** panel. Then click on the name again to open the text editing field.
- Change the track name via the keyboard. Use **Esc** to undo the procedure.
- Click once in the area outside the text editing box to close this box.

The channels of the individual tracks with the relevant scan parameters can be displayed in the **Scan Control** window after activation of the **Channels** button. The description of channel 1 in Track 1, for example, is Ch1-T1.

Config button in Multi Track mode

The **Config** button in the **Multi Track** mode permits all tracks to be loaded, stored under any name, or deleted.

Load a recording configuration

An existing recording configuration can be loaded as follows:

- Click on the **Config** button, the **Recording Configurations** window appears on the screen.
- On the **Store / Apply Configuration** panel, click on the arrow button ▼.
 - This opens a list box of all stored recording configurations.
• Browse through the configurations by clicking, or use the scroll bar at the side of the list box.
• Click on the desired configuration.
 − The selected configuration is shown in the first line of the Configurations list box (e.g.: DAPI).
• Click on the **Apply** button.
 − The program loads those parameters of the selected **Recording Configuration** which have been activated in the **Options** menu under **Settings / Recording Configuration** (see section 5.9.5, page 5-207). The **Recording Configurations** window is automatically closed.

![The optical diagram of the configuration selected appears on the Beam Path and Channel Assignment panel. The entire recording configuration has been activated for the scanning procedure.](image)

(b) **Store a recording configuration**
A newly created or changed recording configuration can be stored under a new name as follows:
• Click on the **Config** button, the **Recording Configurations** window appears on the screen.
• Enter the desired name in the first line of the Configurations list box.
• Click on the **Store** button.
• Close the window by clicking on **Close**.

During storage via the **Config** button, all the data of **Beam Path and Channel Assignment** and the Detector Gain, Ampl. Offset, Ampl. Gain and Data Depth (8 / 12 Bit) scan parameters of all the defined tracks (multitracking) are stored. Furthermore, the used objective, the **Frame Size, Zoom, Rotation & Offset** and **Scan Direction** parameters and the bleach parameters are stored.

(c) **Delete a recording configuration**
A no longer required recording configuration can be deleted as follows:
• Click on the **Config** button, the **Recording Configurations** window appears on the screen.
• Select the configuration to be deleted from the Configurations list box.
• Click on the **Delete** button.
• Close the window by clicking on **Close**.
5.5.3.7 Ratio Settings panel

The **Ratio Settings** panel permits you to activate two additional **Ratio** channels.

- Click on the **Ratio** button.

 - The **Ratio Settings** panel is displayed at the bottom of the **Configuration Control** window. The settings of the selected tracking mode (Single Track / Multi Track) remain unchanged.

The **Ratio Settings** panel is only available in the **Single Track** and **Multi Track** mode.

Source 1 in ratio settings

Selects source 1 data channel in **Configuration Control**.

Source 2 in ratio settings

Selects source 2 data channel in **Configuration Control**, including the option to select "1st Image" for R1 and/or R2 (e.g. to calculate F/F_0 for single wavelength dyes).

R1/R2 in Scan Control

R1/R2 can be selected as channels in the **Scan Control** window. Five preset formulas can be chosen for online display of radiometric or single wavelength dyes.

Set by min/max (in Scan Control window - Channels mode)

Allows the definition of the display scaling according to the expected minimal and maximal values.

Fig. 5-50 Configuration Control window; Ratio activated
The following function elements are provided in the **Ratio Settings** panel:

- **Activation of the Ratio channel (R1, R2)** through assignment of an existing color or definition of a new one. Activation / deactivation of the **Ratio** channel via the check box.

- **Selection of the channels of which the ratio is to be formed** from the relevant list box.

A suitable color can be assigned to each of the two **Ratio Channels R1** and **R2**, in the same way as for the photomultiplier channels.

The channels of which a ratio will be formed are selected via the **Source 1** and **Source 2** list boxes.

- Click on the **arrow button** to select the required channel for **Source 1** and **2** from the list box now opened.

The ratio to be formed between the selected channels can be defined more precisely using three formulas in the **Scan Control** window after activation of the **Channels** button and a click on the relevant ratio button (e.g.: **R1**).
5.5.3.8 Settings in the Lambda Mode

The **Lambda Mode** settings are only available if the LSM 510 contains the META detector. With this spectral module the overall emission from the sample is directed onto a wavelength-dispersive element and is imaged on a 32 channel detector. All 32 photomultipliers of the detector cover a spectral width of approximately 340 nm, a single PMT covers a spectral range of 10.7 nm. In the **Lambda Mode**, images, image stacks or time series can be recorded in a wavelength selective way.

This new experiment is called Lambda Stack. For the acquisition of a Lambda Stack, the fluorescence signal of 8 PMTs out of the 32 can be read out at once. The settings of the beam path for the **Lambda Mode** scanning procedure with regard to the main dichroic beamsplitter and the META detector settings are performed in the **Beam Path and Channel Assignment** panel.

- Click on the **Config** Button in the **Acquire** Subordinate toolbar of the main menu.
 - The **Configuration Control** window opens.
- Click on the **Lambda Mode** button, unless it has already been activated.
 - The **Beam Path and Channel Assignment** panel for the **Lambda Mode** is opened.

![Configuration Control window; Lambda Mode activated](image)
(1) **Beam Path and Channel Assignment panel**

The **Beam Path and Channel Assignment** panel displays the configuration of laser lines, the main (dichroic) beamsplitter and the spectral range of the META detector to be covered.

You can change the settings of this panel using the following function elements:

Beam Path configuration

- **Excitation**
 - Activation / deactivation of the excitation wavelengths (check box) and setting of excitation intensities (slider). Open the **Laser Control** window via the **Laser** button. The active laser lines are automatically displayed in the wavelength color bar.

- **Selection of the main dichroic beam splitter (HFT)** through selection from the relevant list box.

META detector slider

- Definition of number of PMTs out of the 32 PMT Detectors to fit the required spectral range.

Control buttons

- **Close**
 - Closes the **Configuration Control** window.

- **Spectra**
 - The **Spectra** button opens the **Detection Spectra & Laser Lines** window (see page 5-62).

- **Laserline**
 - The **Laserline** button opens the **Wavelength Switch Control** window (see page 5-63).

- **Config**
 - The **Config** button permits existing track configurations to be loaded, stored under any name, or deleted (see page 5-64).

(2) **Beam path - Excitation**

- On the **Beam Path and Channel Assignment** panel, click on the **Excitation** button.
 - This opens a dialog box of all available lasers with their wavelengths and their usable Acousto-Optical Tunable Filters (AOTF) attenuation.

- To select the desired laser line, activate the check box for **Line Active**.

- Use the **Transmission [%]** slider to set the utilizable laser intensity (recommendation: start at 50 %).
 - The transmittance of the Acousto-Optical Tunable Filter (AOTF) changes accordingly.

- This allows you to adapt the laser intensity very sensitively to the job. Activate the check box for **Line Active**.
 - This activates the selected laser power for use. This is indicated by the **Laser Power** displaying lamps (status display green / gray).
By clicking on the **Excitation** button you can check at any time which lasers are available for active operation.

If you deactivate **Line Active**, the laser wavelengths for Enterprise and argon lasers are deselected by means of the Acousto-Optical Tunable Filters (AOTF), i.e. these lasers change into standby status.

If you interrupt your work with the LSM for a break, it is recommended not to switch the Enterprise and argon lasers off by hardware action, but to put them into standby status as described.

Excitation filters, emission filters, HFT main dichroic beam splitters and NFT secondary dichroic beam splitters can be switched online, channels (PMT photomultipliers) only off-line.

(3) Beam path - HFT main (dichroic) beam splitter

- On the **Beam Path and Channel Assignment** panel, click on the HFT main dichroic beam splitters
- This opens a graphical pop-up window of all beam splitters available.
- To select a beam splitter, click on the respective line of the list.
- The selected beam splitter moves into the beam path.
- Proceed accordingly to configure the NFT secondary dichroic beam splitters.

(4) Beam path - META detector settings

On the Beam Path and Channel Assignment panel use the two sliders to define the spectral detection range of the META module. The current position of the slider is displayed in a white box when keeping the left mouse button pressed.

Both slider values are updated in the **Start** and **End** Input box.

The wavelength values can also be typed directly into the Start and End input boxes. The position of the sliders are updated after the next mouse click. The **Number of Passes** displays the number of successive scans to be performed in order to cover the required spectral range.

Step check box: Step size can be increased to 21.4 nm by binning of a pair of adjacent channels.
5.5.3.9 Settings in the Online Fingerprinting Mode

The use of this function permits the selection of reference spectra together with the excitation settings, to allow an immediate display of the unmixing results during the scanning.

- Click on the **Config** button in the **Acquire** subordinate toolbar of the main menu.
 - The **Configuration Control** window opens.

- Click on the **Online Fingerprinting** button.
 - The **Beam Path and Channel Assignment** panel for the **Online Fingerprinting Mode** is opened.

Beam Path configuration

Activation / deactivation of the excitation wavelengths (check box) and setting of excitation intensities (slider). Open the **Laser Control** window via the **Laser** button. The active laser lines are automatically displayed in the wavelength color bar.

Selection of the main dichroic beam splitter (HFT) through selection from **Control buttons for reference spectra**

RS1 ... 8

Menu for selecting a display color and a reference spectra (reference spectra derive from earlier experiments via mean of ROI or ACE tools); selected spectra and colors appear in the wavelength chart. Unmixed results will be displayed during scanning, lambda stack will neither be displayed nor stored.

META detector slider

Definition of number of PMTs out of the 32 PMT Detectors to fit the required spectral range. To optimize acquisition speed, a range detected in 1 or 2 passes is recommended.
Start box Start value of required spectral range.

End box End value of required spectral range.

Step box Step width in spectral range (10.70 recommended).

5.5.3.10 Non Descanned panel

The functions of the **Non Descanned** panel are described in chapter 9 of this manual (section 9.11 page 9-35).
5.5.3.11 Camera Detection panel

The use of this function permits the use of a Zeiss AxioCam HR camera as an alternative external detector.

- Click on the **Config** button in the **Acquire** subordinate toolbar of the main menu.
 - The **Configuration Control** window opens.
- Activate one of the **Single Track** or **Multi Track** buttons and click on the **Camera** button.
 - The **Beam Path and Channel Assignment** panel for camera detection is opened.

Control buttons

TV
Menu for selecting a display color for the camera image.

Reflector
Selects a beamsplitter for the excitation/emission.

Add Track
Adds a second track to the acquisition in **Multi Track** mode, e.g. a different fluorescence filter cube or transmitted light.

If TV and LSM tracks are mixed, the active detection port of the microscope has to be set according to the first track.
5.5.4 Scan Control

The scan parameters for image acquisition are set in the **Scan Control** window.

The microscope must be in the LSM mode, i.e. the relevant sliders on the relevant microscope stand must be in the **LSM** position. The **LSM** button in the Acquire subordinate toolbar is activated when the LSM mode has been set.

The scanning actions are started via the buttons on the right-hand side of the **Scan Control** window, and the scan parameters are set in the main part of the window.

An acquired image is displayed in a separate **Image Display** window. If an **Image Display** window is not yet available, a new **Image Display** window is automatically opened during the acquisition.

Fig. 5-54 Scan Control window

The following scanning modes can be performed:

Spot
- scanning of a spot (Spot + Time Series)

Line
- scanning of a line in the XY-plane (Line, Line + Time Series)
- scanning of a line with different Z-values (Line + Z Stack, Line + Z Stack + Time Series)

Frame
- scanning of an XY frame (Frame, Frame + Time Series)
- scanning of XY frames with different Z-values (Frame + Z Stack, Frame + Z Stack + Time Series)
- scanning of XY frames in defined ROIs (Frame + Use ROI + Time Series)
- scanning of XY frames with different Z-values in defined ROIs (Frame + Z Stack + Use ROI + Time Series)
5.5.4.1 Open / Close the Scan Control window

- Click on the Scan button in the Acquire subordinate toolbar of the Main menu.
 - This opens the Scan Control window, which shows all lasers connected to the system.
- Click on the Close button to quit the Scan Control window.

The following main function buttons are available in the Scan Control window:

Generally available buttons

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode button</td>
<td>When the button is activated, the following panels are available for the setting of the scanning parameters for the line and frame modes: Objective Lens, Image Size & Line Step Factor, Speed, Pixel Depth, Scan Direction & Scan Average and Zoom, Rotation & Offset.</td>
</tr>
<tr>
<td>Channels button</td>
<td>When the button is activated, the Channel Settings and Excitation of Track ... panels are available for the setting of the channels and the laser excitation.</td>
</tr>
<tr>
<td>Spot button</td>
<td>Activate the Spot scan mode</td>
</tr>
<tr>
<td>Line button</td>
<td>Activates the Line scan mode</td>
</tr>
<tr>
<td>Frame button</td>
<td>Activates the Frame scan mode</td>
</tr>
<tr>
<td>Use ROI button</td>
<td>Activates the scanning procedure only within a ROI (region of interest) to be defined first.</td>
</tr>
<tr>
<td>Z Stack button</td>
<td>Activates the Z Stack scan mode, display of additional buttons on the right-hand side of the Scan Control window.</td>
</tr>
<tr>
<td>Z Settings button</td>
<td>When the button is activated, the Z Settings panel is available for the Z-scan parameter definition. The Z Stack scan mode must be active.</td>
</tr>
<tr>
<td>Close button</td>
<td>Closes the Scan Control window</td>
</tr>
<tr>
<td>New button</td>
<td>Opens a new Image Display window</td>
</tr>
<tr>
<td>Find button</td>
<td>Automatic optimization of image brightness and contrast. The settings for the Find function can be varied as required using the Maintain menu, Set Find (see page 5-233).</td>
</tr>
<tr>
<td>Fast XY button</td>
<td>Continuous scan with high speed. This function should be used to a limited extent and only for a short period of time. Fast XY switches temporarily to 512 x 512 frame size.</td>
</tr>
<tr>
<td>Single button</td>
<td>Single scan (named Start in the Z Stack mode).</td>
</tr>
<tr>
<td>Stop button</td>
<td>Stops the current scan procedure, no matter in which window the button is pressed (also see the Time Series Control and Bleach Control windows).</td>
</tr>
</tbody>
</table>
Cont. button / Finish button Continuous scan (not available in the Z Stack mode). If you select the option Frame for Mode and the option Continuous for Number in the Pixel Depth, Scan Direction & Scan Average panel, the Finish button is displayed instead of the Cont. button. In this case, continuous averaging is performed when you have started the scan. If you click on the Finish button, the scan/averaging process is stopped after the scan of the current image has been completed.

Additional button in the Spot mode

Spot Sel button Automatically defines spot on the Image Display window by positioning of two perpendicular lines.

Additional button in the Line mode

Line Sel button Automatically defines a line in the center of the Image Display window (Frame) for creation of the intensity profile; using the mouse, the line for the intensity profile can then be positioned anywhere in the Image Display window.

Additional buttons in the Z Stack mode

Start button Triggers the scan of a stack.

XYscan button Triggers a single XY-scan.

XYcont button Triggers continuous XY-scan.

Line Sel button To prepare the Range function, a cutline is created in the scanned XY-frame to determine the position at which the XZ-scan through the specimen is to be produced. Using the mouse, the line for the XZ-scan can be positioned anywhere in the scan frame. The cutline can be defined either as a straight line or free shape curve.

Range button Produces an XZ-scan through the specimen within the limits determined in Num Slices and Interval; the cutline is determined via the Line Sel function.
5.5.4.2 Frame

When the Frame button is activated, a frame of variable size is scanned pixel by pixel and line by line. The laser beam is moved over the specimen line by line.

The scan parameters and the channels (single detector, META detector) are set via the Mode and Channels buttons, and the laser settings can be checked again or changed.

(1) Mode

When the Mode button is activated, the Objective Lens, Image Size & Line Step Factor, Speed, Pixel Depth, Scan Direction & Scan Average and Zoom, Rotation & Offset panels are displayed in the Scan Control window.

Objective Lens, Image Size & Line Step Factor panel

- Open the Objective list box and select the objective to be used via a click of the mouse (identical to Microscope Control). When using immersion oil objectives, make sure to perform immersion as required.

- Select the Frame Size from the default sizes via the buttons 128, 256, 512, 1024, 2048, or enter the required values via the keyboard. Recommended setting to start with: 512 x 512 pixels.
 - It is also possible to enter different values for X and Y. The value for Y is freely selectable between 1 and 2048 pixels (integers). The value for X must always be an integral multiple of 4. The maximum value for X is also 2048 pixels.

Select the Line Step size between 1 and 10. Only every n-th line is scanned. The lines in between are interpolated. This fast scan mode is called Step Scan.
Speed panel

- Select the Scan Speed from the 13 preset steps via slider or input box. Recommended: 7 for the first scan. A click on the Max button sets the maximum speed for the current zoom.

- The Scan Speed determines the Pixel Time. In the case of different image formats, the Pixel Time is constant for the same Scan Speed, but the Scan Time is different.
- Pixel Time dwell time of the laser beam on the pixel
- Scan Time duration of the acquisition for the entire frame
- The minimum Pixel Time of 0.64 µs is only achieved at resolutions 512 x n and above, the maximum Pixel Time of 204.8 µs only with frame sizes larger than 1024 x n.
- A longer Pixel Time for even smaller frame sizes is possible; maximum: 6553.6 µs.

Fast XY only for fast image acquisition during parameter setup.
Pixel time and scan time will be shown.
Fast XY = speeds 8 – 13 (depending on zoom), average = 1, max. resolution: 512 x 512 pixels.

Note that Lambda Scan mode can only be performed within specifications from speed 1 ... 10 at 512 x 512 pixels.

Depending on scan speed, dynamic range of the detector and application of ROIs the following maximum number of channels can be performed with the LSM 510 META.
Pixel Depth, Scan Direction & Scan Average panel

- Select **8 Bit** or **12 Bit** Data Depth, i.e. 256 or 4096 gray values.
- Select the **Unidirectional** or **Bi-directional** Scan Direction.
 - **Unidirectional**: The laser scans in one direction only, then moves back with beam blanked and scans the next line.
 - **Bi-directional**: The laser also scans when moving backwards, i.e. the Scan Time is halved.
 - The pixel shift between forward and backward movement (double image) resulting from bi-directional scanning must be corrected via the **Scan Corr X** and **Y** sliders. Zero° rotation requires correction in the X-direction, 90° rotation must be corrected in the Y-direction. If the image was rotated, correction is required in both coordinates. Correction is performed on-line in the continuous scan mode (**Cont.** button). The size of the shift depends on the Scan Speed. For automatic scan correction, click on the **Auto** button.
- Select the **Line** or **Frame** mode for averaging.
- Select the desired scan average method **Mean** or **Sum** in the **Method** selection box.
- Select the desired scan average from the available values **2**, **4**, **8** and **16** in the **Number** selection box or **Continues** (only for **Frame** average mode).

The greater the number of averages selected for **Mean** average **Method**, the better the image quality will be; the scanning time will be prolonged accordingly.

Averaging can be performed in different ways, depending on whether the **Mean** or **Sum** method has been activated.

If you are using the **Mean** method, the image information is generated by adding up all scans pixel by pixel and then calculating the mean value.

In the **Sum** method, the pixel values of all scans are only added up, without a mean value being calculated.

To create the image information using the **Line** average mode, each line (depending on the setting) is scanned 2, 4, 8 or 16 times during Scan Average, and then the average value per pixel is calculated. This minimizes noise interference during the scanning procedure.

If the **Frame** average mode is used to create the image information, the complete frame is scanned 2, 4, 8 or 16 times, depending on the setting. The average value is recalculated after each frame scan.

The **Frame** average mode also permits continuous averaging.
- For this, select the **Continuous** option in the **Number** selection box.

If you have selected the **Continuous** option, the **Finish** button for ending continuous averaging is displayed instead of the **Cont.** button. Use the **Single** button in this case to start continuous scanning. When you click on the **Finish** button, the scan currently in progress will be completed before the process is stopped.
In this panel, the scan range is set for zoom, rotation and offset in relation to the field of view of the microscope. The diagonals of the outer square on the right-hand side correspond to the field of view of the microscope.

The inner square contained in it (rectangle in the case of differently set frame size) represents the scan range and immediately shows the changes made to zoom, rotation and offset.

The blue line at the top of the scan range is helpful for orientation when the scan range is rotated in the direction of the field of view.

- Set the desired zoom factor via the slider (Zoom) or by clicking on the arrow buttons.
 - The zoom factor can be set continuously in the range from 0.7 to the maximum of 40, and is displayed in the relevant input box. The value 0.7 corresponds to factor 1, and value 40 to factor 52, related to the field of view. From zoom factor 5.6, the magnification will be empty, and the zoom factors will be displayed in red in that case. Clicking on button 1 enables immediate resetting to the zoom factor 1.
 - Recommended setting to start with: Zoom 1.

- To rotate the scan area, use the slider (Rotation) or click on the arrow buttons.
 - Clicking on button 0 enables immediate resetting to 0°.
 - Recommended setting to start with: Rotation 0°.

- Move the scan area by clicking on the 4 arrow buttons (Offset).
 - The offset of the scan area from the center of the field of view is displayed online in µm for X and Y.
 - A click on the center button will recenter the scan area to the field of view.
 - Clicking, holding and drawing the rectangle with the mouse permits the scan area to be moved directly within the field of view.
 - Recommended setting to start with: Offset X = 0, Y = 0

During the scan procedure, the functions Objective change, Speed, Scan Corr, Zoom, Rotation and Offset can be influenced online.

By clicking on the Reset button the scan zoom is set to 1 and the XY offsets are set to the zero position and the ratio angle is set to 0°.
(2) Channels

If the Channels button is activated, the Channel Settings and Excitation of Track ... panels are displayed in the Scan Control window.

Channel Settings panel

In the Channel Settings panel, the channels (incl. META channels if present and ratio channels) defined in the Configuration Control window are listed track by track as selectable buttons.

Depending on the selected Channels button (e.g. ChS1-T1), the currently used settings of Pinhole, Detector Gain, Amplifier Offset and Amplifier Gain are displayed.

- The slider near Pinhole enables you to change the pinhole diameter of the relevant channel.
 - The pinhole diameter is indicated in µm, Optical Slice and Airy Units. The Airy value depends on the aperture of the objective, excitations and the emission wavelength.
 - A small pinhole diameter will increase the depth of focus, but reduce the light intensity received by the PMT photomultiplier.
 - When you vary the pinhole diameter, an Optical Slice value is displayed. For optimum depth resolution, Airy values should be small, but in fluorescence applications not below 1.0 to keep the intensity loss within a reasonable limit.
 - A click on the 1 button sets the pinhole to a diameter of 1 Airy unit. A click on the Max button sets the pinhole diameter to the maximum.

- The sliders (and the relevant arrow buttons) near Detector Gain, Ampl. Offset and Ampl. Gain enable you to set the photomultiplier of the selected channel during continuous scanning.
 - Detector Gain: Setting of the high voltage of the PMT photomultiplier - setting of image contrast and brightness (values available between 80 and 1250)
 - Amplifier Offset: Setting of the electronic offset - background of the image can be set (values available between -2 and 0.1)
 - Amplifier Gain: Amplification factor (values available between 1 and 3)
The parameters Detector Gain, Ampl. Offset and Ampl. Gain are described in section Pinhole / Detector Gain / Ampl. Offset / Ampl. Gain (page 5-356) in the context of image optimization. In case the Lambda Mode has been chosen in the Configuration Control window only the META channel ChS is displayed in the Channel settings of the Scan Control window.

The parameters of a ratio channel are set in a separate dialog box.

- Click on the button of a ratio channel (e.g. R1). The dialog box for the setting of the ratio parameters is displayed.

Clicking on the required tabs enables you to choose from five formulas (Type 1 to 5) for ratio calculation. The relevant decimal values can be entered in the input boxes via the keyboard. The entered values remain unchanged even after switchover to another formula and can be reactivated any time.

The formula type activated last is always used for ratio formation during the scan procedure. If the input box does not contain any value at all or no suitable value, the useful value last used will be activated.

The ratio channels are displayed in the Image Display window (see Fig. 5-64).

- Select the required formula and enter the relevant values.

Letters can be entered into the formula fields which will be valued as 1; it is also possible to make no entry, which will also be valued as 1, but will not be displayed.

Set by min/max (in Scan Control window - Channels mode) allows the definition of the display scaling according to the expected minimal and maximal values.
Excitation panel

- In the **Excitation** panel you can select other lasers and vary laser intensities (in the same way as in the **Laser Control** or **Configuration Control** window) and you can program the AOTF for different laser lines.

By clicking on the **Laserline** button the **Wavelength Switch Control** window opens. If more laser lines than AOTF positions occur the AOTF can be programmed for various lines.

- Select the required laser lines in the selection boxes and confirm the selection with a click on **Store**.

- **Click on the Close button to close the Wavelength Switch Control window.**

 If bi-directional scanning with 12-bit technology, several channels and scan speeds of 9 or 10 are used at the same time, a data jam can occur and difficulties can therefore arise if 233 MHz PC’s (or lower) are used. All parameters under Channels can be varied online.

Acquisition of a frame

Once you have set up your parameter as defined in the above section, you can acquire a frame image of your specimen.

- **Click on the Single button in the Scan Control window.** The system will automatically start the acquisition of a frame. The individual channels and the overlay image can be viewed by changing to the **Split xy** mode. This button is located on the right-hand side of the **Image Display** window.

The following scan image shows the result with two defined tracks plus the **Ratio** channel and the overlay (see Fig. 5-64). The appropriate **Channel Settings** panel in the **Scan Control** window is shown in Fig. 5-63.
Fig. 5-64 Image Display window with two tracks plus ratio track (Split xy mode)

1st track:
- Ch1-T1
- Ch3-T1
- ChD-T1

2nd track:
- Ch1-T2
- Ch3-T2

Overlay

Ratio channel:
- R1
In case the Lambda Mode has been chosen in the Configuration Control window, the following scan image shows the result of the Lambda Stack.

Fig. 5-65 Image Display window with a Lambda Stack
(3) Z Stack

This function permits a series of XY-images to be produced in different focus positions (Z slices).

When the Z Stack button is pressed, the Z Settings button is automatically activated and the Z Settings panel is displayed in the Scan Control window. However, it is possible at all times to switch over to setting / changing the scan parameters or the PMT photomultipliers and lasers via the Channels and Mode buttons.

The additional XYscan, XYcont, Line Sel and Range buttons are available on the right-hand side of the Scan Control window, and the labeling of the Single button changes to Start.

The Z Stack function is deactivated by clicking again on the Z Stack button.

Z Settings panel - overview

The parameters of the Z Stack to be created are defined and displayed online in the Z Settings panel.

- **Stack Z Size:** The dimension of the Z Stack in µm. The stage (nosepiece) is moved in such a way that the stack size, dependent on the refractive index, is achieved optically.

- **Focus Position:** The current Z position. If the refractive index (Refr. Corr.) changes, the value of the focus position in relation to the "0" also changes (online).
Z Slice: Opens the Optical Slice window. The Optical Slice window contains two buttons (Optimal Interval: ... µm and Optimal Pinhole Diameter) to allow the setting of the optimum interval and the optimum pinhole diameter of fluorescence stacks. Both values influence each other and depend on the objective used.

In the case of a fixed pinhole diameter, half the value of the smallest pinhole diameter used is taken to determine the optimum interval. Accordingly, the pinhole diameter to be used in the case of a preset interval is determined by doubling the value of the selected interval.

The Optical Slice window displays the following information:

Black: Stack Z Size (µm) = intervals x (number of slices - 1)

Optimal Interval = depending on the objective used and the pinhole diameter setting

Red and other colors: Presentation of the actual data set by the operator helps to optimize stack creation.

Tabs

Z Sectioning: Tab for setting of Number of Slices, Interval and Current Slice via slider / arrow button.

Mark First/Last: Tab for determination of the Z-value for the first and last XY-image of the stack, combined with manual focusing or Stage control.

Hyperfine Z Sectioning: Tab for production of a Z Stack using the optional HRZ 200 fine focusing stage.

First: Scanning / Display of the beginning (first XY-image) of the stack.

Mid: Scanning / Display of the center (XY-image in the center) of the stack.

Last: Scanning / Display of the end (last XY-image) of the stack.

Refr. Corr.: Considers the different refractive index between the immersion medium of the objective (n') and the embedding medium of the specimen (n), which can be set between 0.5 and 3 via the slider / arrow buttons

\[\text{Ratio} = \frac{n}{n'} \]
X:Y:Z=1:1:1
Clicking on this button will set the Z-interval in such a way that the voxel has identical dimensions in the X-, Y- and Z-directions (cube).

Auto Z Corr.
This function permits the set values of the scan parameters Detector Gain, AOTF, Ampl. Offset and Ampl. Gain (as measure for the brightness level) to be varied between two freely selectable slices of a stack to be recorded. During the scan procedure, the interim values of these three parameters are automatically linearly interpolated between the initial and end values (see page 5-104).

The parameters of a Z Stack can be defined using the Z Sectioning tab, the Mark First/Last tab or - if the optional HRZ 200 fine focusing stage is connected - the Hyperfine Z Sectioning tab:

Z Sectioning tab

Num Slices: Entry of the number of sections (single XY-images) to be recorded with the stack via the slider / arrow buttons. The entry does not influence the interval.

Interval: Entry of the step width (Z-distance between the single XY-images) via slider / arrow buttons. The entry has no influence on Num Slices.

Current Slice: Display of the current position of the slice within the stack. Change of position via slider / arrow keys. Reset of the current slice position in the center of the stack by clicking on the **C** button. Of course, the borders of the stack are also changed if the current slice position is changed.

Keep Interval: The interval remains constant when the stack limits or number of slices are changed.

Keep Slices: The number of slices remains constant when the stack limits or interval are changed.
Fast Z Line: Not available for frame mode. Fast Z scan for overviews (only for Line scan mode). The stack size is retained; the interval is adapted depending on the scan speed.

The optimum stack size is determined with the help of the Line Sel and Range functions:

- Click on the Line Sel button.
 - An XY-scan of the current slice is performed. The cutline is displayed in the image center. The Line toolbar is displayed on the right-hand side of the Image Display window.

The Line toolbar permits you to define the position, shape, width and color of the cutline in the Image Display window.

The following function buttons are available:

- **Arrow selection** button: Activates the mouse pointer for the selection and positioning of the cutline in the Image Display window and for changing its length.
 - **Length change**: Click on the drag point and keep the mouse button pressed. Drag the point and release the mouse button.
 - **Shifting**: Click on the line and keep the mouse button pressed. Shift the complete line and release the mouse button.

- **Line arrow** button: Generation of a straight cutline in any direction in the Image Display window.

- **Opened free shape curve** button: Generation of an open, free shape curve (spline) in the Image Display window. The first click sets the starting point, each further click adds a line segment. A click with the right mouse button ends the process.

- **Line** button: Selecting the line width of the cutline.

- **Color** button: Selecting the color of the cutline.
• Click on the **Line arrow** button or the **Opened free shape curve** button in the **Line** toolbar.
• Define a straight line or a free shape curve (spline) as the cutline for the XZ scan.

Fig. 5-69 Image Display window with cutline displayed
• Then click on the **Range** button.
 - The XZ-scan will be performed and displayed in the **Image Display** window. At the same time, the position of the current slice is shown with a green line and the positions of the first and last slice with two red lines.

![Image Display window with green and red lines](image)

• Moving the green line (current slice) enables you to change the current focus position (moving the stage or nosepiece in the process). The stack limits are also changed, while interval and Num Slice remain unchanged.

• Shifting one of the red lines enables you to change the stack size; in that case, the interval size is matched, and the Num Slice remains constant.
 - Changing the values of Num Slice, Interval and Current Slice in the **Z Sectioning** tab will, of course, also change the positions of the red and green lines in the **Image Display** window.

• A click on the **Start** button will start the recording of the Z Stack.
 - The settings of the entire **Scan Control window** (Mode, Channels, Z settings) will be used when the stack is produced.
The determination of the optimum stack size is performed here via focusing during a continuous scan.

- Click on the **XYcont** button.
 - A continuous XY-scan of the set focus position will be performed.
 - If you have reduced the scan speed or have set image averaging, you should use the fast scanning mode to find the lowest and highest points of focus. These settings are made under **Mode** in the **Scan Control** menu, or directly via the **FAST XY** button.

- Use the manual focusing drive or the **Stage and Focus Control** window (see **Stage**, page 5-140) to focus on the upper position of the specimen area where the Z Stack is to start.

- Click on the **Mark First** button to set the upper position of the Z Stack.

- Then focus on the lower specimen area where the recording of the Z Stack is to end.

- Click on the **Mark Last** button to set this lower position.

- The **Num Slices** slider enables you to set the number of slices. The limits of the Z Stack remain constant, the interval is matched accordingly.

- Click on the **Start** button to start the recording of the Z Stack.

In case the upper and lower limits of the stack have been switched round, automatic matching will be performed by the software, since the stage of the Axioplan 2 imaging MOT always moves from bottom to top and the nosepiece of the Axiovert 200 M always moves from top to bottom.

Setting via Range is not possible via the **Mark First/Last** function, i.e. the lines cannot be shifted.

The **Fast Z Line** functions is not available in frame mode.

When you change from **Mark First/Last** to **Z Sectioning** or vice versa, the values are updated in the **Z Sectioning** tab.
Hyperfine Z Sectioning tab

Activation of this tab is only possible if the HRZ 200 fine focusing stage or piezo objective focusing device has been connected.

The HRZ 200 or piezo objective focusing device can be controlled via software (see *Stage*, page 5-140).

The accuracy of the HRZ 200 or piezo objective focusing device regarding the step width in the Z-direction lies in the range of 10 nm.

The HRZ 200 or piezo objective focusing device allows stacks to be produced considerably quicker than via the focus of the microscope stand.

The focus position remains unchanged.

- Clicking on the additional **Leveling** button moves the HRZ 200 to the zero position, while the motor focus moves into the opposite direction at the same time, i.e. the position of the object in relation to the objective remains unchanged. This function is used to set defined initial conditions.

- The **Calibration** slider must normally be left in the default position 0. Calibration is required only if the examined image field is located clearly outside the center of the specimen carrier on the HRZ 200.

Calibration is not required for the motorized stage. In that case, the **Calibration** function cannot even be activated (see Annex: Hints on the use of the HRZ 200 or piezo objective focusing device).

- Use the slider or the arrow keys to set the number of slices for the Z Stack.

- Use the slider or the arrow keys to set the size of the interval.

Num Slices and **Interval** can be varied independently of each other within the HRZ 200 work range of ±100 µm. When change is made to **Z Sectioning**, or vice versa, values are also taken over, provided they are within the HRZ 200 or piezo objective focusing device work range.

If a larger range is set for the Z Stack under **Z Sectioning** or **Mark First/Last**, the **Interval** is matched accordingly when changing to **Hyperfine Z Sectioning**, while **Num Slice** remains constant.

- Use **XYcont**, **Line Sel** and **Range** to determine the parameters of the Z Stack (identical to **Z Sectioning**).

If the green line (Current Slice) is shifted after the creation of **Range**, the focus position will change (the HRZ 200 or piezo objective focusing device remains in the center position). The red lines (stack limits) can only be changed symmetrically to the Current-Slice position within the HRZ 200 or piezo objective focusing device work range.

Since the HRZ 200 moves from bottom to top during the creation of the Z Stack, top and bottom of the Axiovert 200 M have been switched round.
Auto Z Corr.
The function **Auto Z Correction** allows a linear variation of Detector Gain, Ampl. Offset, and Ampl. Gain values between the different slices of a stack.

- Click on the **Auto Z** button, the **Auto Z Brightness Correction** window opens.

The buttons **Set A** and **Set B** permit definition of two distinct gain / offset / AOTF settings at two different Z positions A and B.

Pressing the **Move A** and **Move B** buttons permits the defined Z-position to be directly approached.

The **Enable test** check box permits simulation of the value changes for Detector Gain, Ampl. Offset, Ampl. Gain and Attenuation in the **Scan Control** window without the scanners being in operation.

If a Z Stack is performed and the **Auto Z Brightness Correction** window is opened this correction is automatically performed equal whether the **Enable test** box is enabled or disabled.

- Use the focusing drive to set the Z-position where the brightness level correction is to be started.

- In the **Scan Control** window, set the initial values for Detector Gain, Ampl. Offset and Ampl. Gain. If required, start the continuous scan procedure for this purpose. Click on the **Set A** button.

- Use the focusing drive to set the Z-position where the brightness level correction is to be ended.

- Set the end value for Detector Gain, Ampl. Offset and Ampl. Gain in the **Scan Control** window. Click on the **Set B** button.

- If required, check the change of the set values by activating **Enable test**.

After the start of the scan procedure, the brightness level values are linearly interpolated between the defined references A and B.

Note that the total Z range where the interpolation takes place can exceed the Z reference A and B.
Acquisition of a Z Stack

Once you have set up your image as defined in the above section, you can collect a series of confocal images through the different focal planes of your specimen.

- Click on the Start button on the Scan Control window. The system will automatically start the creation of a Z Stack. Be careful not to bump the air table or the microscope until Z sectioning is completed. Each successive Z Slice can be viewed by changing to the Gallery Mode. This button is located on the right-hand side of the image.

A black bar will be shown under the image and will move from left to right, showing that the LSM 510 is in the process. The laser will automatically stop scanning when the Z Stack is completed.

The entire stack of images can be saved using the Save or Save As buttons on the right-hand side of the image.
(4) Use ROI (Region Of Interest)

Performance of the Frame and Z Stack scan modes can be limited to one or several freely definable sections within the Image Display window using the Use ROI function.

The laser scans the entire line length, but is limited in the Y-direction by the ROIs. The Scan Time is therefore reduced.

Definition and activation of the ROIs to be used is performed via the Edit ROI function (Acquire subordinate toolbar).

If no ROI has been activated, the Use ROI button is not available.

- Click on the Edit ROI button in the Acquire subordinate toolbar to open the Edit ROI window.
- Define one or several ROIs as required or select an existing ROI from the ROI Lists panel (see Edit ROI, page 5-116).
- The selected ROI is automatically activated when the Edit ROI window is closed with a click on Close.
- Click on the Use ROI button in the Scan Control window to perform the scan procedure in the defined ROI exclusively.

Only the regions of interest defined before are visible in the new scanning image, the other areas remain dark.

- The Scan Time is updated when ROIs are used.
- Clicking on the Use ROI button again will deactivate the function.
5.5.4.3 Line

In the Line mode, fluorescent or reflected light along a freely definable line is displayed in the form of an intensity profile.

All the possibilities of creating an image (Frame, Z Stack) are also available in the Line mode.

The Line and Frame buttons are activated alternately and exclude each other.

If the Line button has been selected, the Line Sel (selection) button also appears on the right-hand side of the Scan Control window. It permits positioning of the line to be scanned as required within the Image Display window (Frame in XY-plane).

- Set all the parameters for the Scan procedure (Mode and Channels or Z Settings) in the same way as for the scanning of a frame or a Z Stack.

- Then click on the Line Sel button.

 - A frame will be scanned and the currently selected scan line and its intensity profile will be displayed. The Line toolbar is displayed on the right-hand side of the Image Display window.

Fig. 5-76 Scan Control window - Mode/Line
The **Line** toolbar permits you to define the position, shape, width and color of the scan line in the **Image Display** window.

The scan line can be defined either as a straight line or a free shape curve (spline).

Fig. 5-77 Image Display window after activation of the Line Sel button
The following function buttons are available in the Line toolbar:

- **Arrow selection** button: Activates the mouse pointer for the selection and positioning of the scan line in the Image Display window and for changing its length.
 - Length change: Click on the drag point and keep the mouse button pressed. Drag the point and release the mouse button.
 - Shifting: Click on the line and keep the mouse button pressed. Shift the complete line and release the mouse button.

- **Line arrow** button: Generation of a straight scan line in any direction in the Image Display window.

- **Opened free shape curve** button: Generation of an open, free shape curve (spline) in the Image Display window. The first click sets the starting point, each further click adds a line segment. A click with the right mouse button ends the process.

- **Line** button: Selecting the line width of the scan line.

- **Color** button: Selecting the color of the scan line.

(1) **Defining a straight line as the scan line**

- Activate the **Line arrow** button of the Line toolbar. Click on the spot in the frame at which the line is to start and keep the mouse button pressed.
- Then drag the line to its desired end position and let go off the mouse button again.

The position of the line in the image can be changed as follows:

- Activate the **Arrow selection** button. To change the position in the X/Y-direction, click on the line and keep the mouse button pressed.
- Then move the lines to the desired position and let go off the mouse button again.
- To change the rotation direction or the length of the line, click on the start or end point of the line and keep the mouse button pressed.
- Change the rotation direction and/or the length of the line as required and let go off the mouse button again.

The intensity profile for the defined line is displayed on-line.
After release of the mouse button, the relevant intensity profile along the drawn line will be displayed. In the **Zoom, Rotation & Offset** panel, the current, changed angle and the offset in X and Y are displayed.

- When the **Line Sel** button is pressed again, a frame will be scanned in such a way that the selected line lies exactly in the center of the Y-axis again and is parallel to the X-axis.

The position of the Line (rotation and offset) can also be changed directly in the **Zoom, Rotation & Offset** panel of the **Scan Control** window.

In the **Line** mode, Line Stacks can also be recorded over a defined period of time (see **Time Series**, page 5-120).

Line Scan is only possible in the unidirectional mode.

(2) **Defining a free shape curve (spline) as the scan line**

- Activate the **Free shape curve** button 🟠 of the **Line** toolbar.

- Draw the your shape curve (spline) in the **Image Display** window using the mouse. The first click sets the starting point, each further click adds a line segment. A click with the right mouse button ends the line definition.

The scanner represented by a white line immediately begins with the on-line tracing of the defined free shape curve. The laser excitation remains inactive in this process.

If the defined free shape curve becomes too complicated or the selected **Scan Speed** is too high, the following message appears in the status bar of the **Image Display** windows:

Maximum scanner speed exceeded!

- In this case, reduce the **Scan Speed** set in the **Scan Control** window.

- If the generated contour and the line traced by the scanner are not in coincidence, reduce the **Scan Speed** by a further amount.

If no sufficient coincidence of the two lines can be achieved by the reduction of the scan speed, you have to calibrate the scanner position signal.
• Click on the **Maintain** button in the **Main** menu and then on the **Spline** button.
 - The **Calibrate Spline Scan** window is opened.
• Bring the generated contour and the scanner line to coincidence by varying the amplitude or offset values for X and Y.
• If necessary, match the free shape curve to the scanner line.
• Then click on the **Single** or **Cont.** button to execute the scan process, with the laser activated.

A **Line** scan is performed along the defined freehand shape curve, and the intensity profile is displayed at the bottom of the **Image Display** window.

![Calibrate Spline Scan](image1)

Fig. 5-78 Calibrate Spline Scan

![Image Display window](image2)

Fig. 5-79 Image Display window after definition of a freehand shape curve for the line scan process
Irrespective of the length of the defined freehand shape curve, the intensity profile is always calculated (by interpolation) and displayed in accordance with the pixel value set under **Line Length** (2048 pixels maximum).

- Click on the **Stop** button to terminate the scan procedure.

As soon as the free shape curve is modified, the laser excitation is deactivated and the scanner again starts to trace the newly generated free shape curve.

(3) **Selecting the width and color of the scan line**

- Line color and width can be set via the **Line** and **Color** buttons of the **Line** toolbar.

(4) **Line Stack**

The intensity profile of a defined straight line or free shape curve can also be recorded as a Z Stack. To do this, proceed in the same way as for the Frame Stack.
5.5.4.4 Spot

In the Spot mode fluorescent or reflected light occurring from a single voxel xyz is detected. In this mode a spot can be defined by two perpendicular lines in the Image Display window.

In the spot mode the Z Stack button is not available. After definition of the spot position the only possible scan mode is a time series of a spot.

Fig. 5-80 Scan Control window - Mode/Spot
5.5.4.5 Camera control

The use of this function permits the control of the external CCD-camera settings.

(1) Open / Close the Scan control window for camera control

- In the Configuration Control window, activate the Camera button.
- Click on the Scan button in the Acquire subordinate toolbar of the main menu.
- Click on the Close button

(2) Function description

Mode button | Displays the selected objective, frame size and pixel depth.

Frame Size | Selects between square formats or free defined frame sizes.

Format | Selects between a range of default camera resolutions. The 5x5 binning mode can be used for focusing in realtime.

Data Depth | Sets the pixel depth.

Zoom/Offset | Shifts a subregion in the frame.

Reset | Resets the frame/subregion to default value selected in Format.

Fig. 5-81 Scan Control window - Mode, settings for camera control
Channels button Displays the activated channels and possible settings.

Exposure time Sets the exposure time of the camera.

Find Starts a prescan and sets the exposure time automatically. In case of a camera multitracking, only one channel should be selected in Configuration Control in order to speed up the find function.

Fast X/Y Starts a fast online scan mode, e.g. for focusing. Also, the 5x5 binning mode can be used (to be set in Mode / Format).

Single Starts a single image acquisition (The **Image Display** window appears.).

Continuous Starts acquisition of a series of images (The **Image Display** window appears.).

Crop Defines a ROI for camera acquisition in the **Image Display** window. Note that this is just a **Crop** function, while the whole sample is illuminated. Rotation of the ROI is not possible.

Info button Shows the acquisition parameters in the **Image Display** window.

Close Close the **Scan Control** window.
5.5.5 Edit ROI (Region Of Interest)

A scan image allows certain areas (ROIs) to be defined. Only these areas of interest will be scanned. The laser beam will be switched on only in these areas via Acousto-Optical Tunable Filters (AOTF). Definition and activation of the ROIs for the scan procedure is performed in the Edit ROI window.

5.5.5.1 Open / Close the Edit ROI window

- Click on the Edit ROI button in the Acquire subordinate toolbar of the Main menu. The Edit ROI window appears on the screen and the ROIs defined last are visible in the Image Display window.
- Click on the Close button in the Edit ROI window. The Edit ROI window is closed and the ROIs disappear from the Image Display window.

![Edit ROI window and Image Display window with ROIs](image)

The Use ROI status display (button) in the Scan Control window shows whether the ROI mode is activated or not. If ROIs shall not be taken in consideration during scanning, the Use ROI button must be deactivated prior to the scanning procedure.

When Edit ROI is activated and the first ROI is drawn in the Image Display window, the Use ROI is activated automatically.
5.5.5.2 Function description

The following functions are available on the right-hand side of the Edit ROI window:

- **Close** button: The Edit ROI window is closed.
- **Remove** button: An entry marked in ROI Lists (stored ROI configuration) is deleted.
- **Add to Lists** button: The Add ROI List window is opened.

(1) ROI Lists panel

In the ROI Lists panel, all the currently defined and stored ROI configurations are shown.

- Click on the ROI configuration which you want to use for the scan procedure.
 - The selected ROI configuration is highlighted in blue and displayed in the opened Image Display window.
- To produce a new ROI configuration, an already stored configuration can be activated, changed and stored under a new name using the Add to List button.
- To delete a stored ROI configuration from the list, click on its name first (highlighted in blue) and then on the Remove button.
(2) **Interactive ROI Definition panel**

In the **Interactive ROI Definition** panel, the parameters of the ROI configuration just selected from the **ROI Lists** panel are displayed. Furthermore, it contains all the functions required for the creation of ROIs.

The X and Y values for **Center Position** and **Dimension** can be edited.

- Activate the relevant text box with a mouse click and enter the new value via the keyboard.
- If you click outside the edited text box, the new value will be taken over and the ROI figure be shifted to the new position.

The upper part of the panel gives an overview of all the individual figures stored under the selected name according to type, position within the **Image Display** window (in pixels) and greatest dimension in X and Y (in pixels). The origin of the position indication lies in the left top corner of the **Image Display** window.

- Check box (e.g.: 1 - 4): Clicking on this check box allows a ROI to be deactivated. The tick disappears from the check box, as does the relevant marked area from the scanning image. Clicking on the check box again will reactivate the ROI.

- **Arrow** button: Activation of the mouse button to change the size or move the ROIs in the **Image Display** window.

- **Rectangle** button: Draw of a rectangle in the **Image Display** window; click and keep mouse button pressed, drag the rectangle in any direction, let go off the mouse button to end the procedure.

- **Bezier** button: Draw of a bezier figure in the **Image Display** window; first click sets the starting point, each additional click adds a line, double-click on the starting point closes the figure and ends the procedure.

- **Ellipse** button: Draw of an ellipse in the **Image Display** window; first click sets the center point, displayed line permits determination of the extension, second click sets the first dimension, then the second dimension and the rotation direction can be determined, third click sets the second dimension and direction and ends the procedure.

- **Circle** button: Draw of a circle in the **Image Display** window; click and keep the mouse button pressed to set the center point, drag the diameter, let go off mouse button again to end the procedure.
Polyline button: Draw of a polyline figure in the *Image Display* window; first click sets the starting point, each further click adds a line, double-click on the starting point closes the figure and ends the procedure.

Recycle bin button: All the ROIs dragged to the scanning image are deleted. If an area outline was marked before, this area is now deleted in the scanning image.

Auto / Color button: A defined color from the list of colors can be assigned to the ROIs. In that case, the same color is assigned to all the individual figures. In the *Auto* position, the outlines of the dragged ROIs are automatically colored differently.

Line button: This button allows you to determine the line thickness of the area outline. This is for display purposes only. The scanned line is not effected.

Fit Frame Size to bounding Rectangle of all ROIs check box: If this check box is ticked, the scan procedure is displayed only within a rectangle which is defined by the greatest extension in X and Y of all the individual figures together, i.e. the pixel number and the data quantity of the *Image Display* window are reduced.

- In the toolbar of the *Interactive ROI Definition* panel, click on the symbol of the area you want to use to mark the region of interest in the scanning image. Five different area symbols are available in the form of buttons.

- Click on the marking area and keep the mouse button pressed to drag the area into the region of interest in the scanning image. The marking area will be numbered automatically and entered in the *Interactive ROI Definition* panel with its position and dimension parameters and the appropriate number.

- The dragged marking area is marked by clicking on its outline; its size can be changed by clicking on the marking points. Clicking on the area edge beside the marking points allows repositioning of the area on the scanning image.

 - The digits of the ROIs can be shifted independently of the contours of the figure.

- If you have framed all the required ROIs in accordance with steps 2 to 4, you can store these ROIs under any required name via the *Add to Lists* button.

 - The *Add ROI List* window will appear. Enter any required name to store the ROIs and click on the *OK* button.

 - This stored ROI configuration appears in the *ROI Lists* panel of the *Edit ROI* window.
5.5.6 Time Series

The **Time Series Control** window allows the definition of parameters for time series.

The **Time Series** function offers the following options for the creation of image series:
- Definition of break times between 0.1 ms and 10 hours.
- Determination of the number of steps from 1 to 10,000 for one scanning procedure.
- Setting of markers.
- Interruption of time control via pause function, and resume of the time series function.
- Triggering of time series via:
 - numeric input
 - external trigger pulses
 - time (of the PC)

5.5.6.1 Open / Close the Time Series Control window

- Click on the **Time Series** button in the **Acquire** subordinate toolbar of the **Main** menu.

The **Time Series Control** window appears on the screen.
- Click on the **Close** button to close the **Time Series Control** window.

![Time Series Control window](image-url)
5.5.6.2 Function description

The following functions are available on the right-hand side of the Time Series Control window:

Close button
Closes the Time Series Control window.

New button
Opens a new Image Display window.

Start T button
Starts the Time Series.

Start B button
Starts the Time Series in combination with a bleach procedure. Bleach procedure must be defined first in the Bleach Control window.

Stop button
Stops the entire Time Series. A current scan is interrupted.

Pause button
Interrupts the Time Series. Button labeling is changed to Resume. A current scan is performed until the end. When the button is pressed again, the Time Series is immediately continued with the next scan procedure.

Bleach button
Starts a Bleach procedure without a Time Series. Bleach procedure must be defined first in the Bleach Control window.

Mean ROI button
Creates a Time Series with the intensity values of the Frame or the default ROIs. An average value is formed of the intensity values of the Frame or the ROIs determined in the relevant scan procedure. These average values are displayed in an extended Image Display window as a function of the time which has passed.

The status line, in which the phases of the current Time Series or notes for the user are displayed, is in the lower part of the Time Series Control window.

(1) Start Series panel

In this panel, the parameters for the start of the time series are set.

The following functions are available:

Manual button
The time series is started manually with a click on the Start T or Start B button.

Trigger button
The time series is started via a trigger signal from Trigger Control.

Time button
The time series is started when the set time is reached. The internal computer time applies.
OPERATION IN EXPERT MODE

Acquire Menu

Time Series

** LSM 510**

LSM 510 META

Time input box

Input of the time for the start of the time series (**Time** button activated).

Trigger in list box

Selection of the trigger key (1-4) with which the start is to be triggered (**Trigger** button activated).

Trigger out list box

Selection of the trigger keys (1-4) for the out signal.

Fig. 5-89 **Start Series panel**

(a) **Start via Trigger**

For the start via trigger control (**Trigger** button activated), first determine the trigger key which is to trigger the start of the Time Series.

- Open the **Trigger in** list box with a click on the arrow button.

- Choose one of the trigger keys 1 to 4 (e.g. **Trigger1**).

It is also possible to trigger an out signal via trigger control.

- Open the **Trigger out** list box with a click on the arrow button.

- Choose one of the trigger keys 1 to 4 (e.g. **Trigger1**).

In this example, the scan procedure is triggered on pressing key 1 of the trigger control, and an out signal is given at the same time.

(b) **Start via Time**

For the start via the time set on the PC (**Time** button activated), the start time must be entered first in the **Time** input box.

- Click in the **Time** input box to open it.

- Enter a start time via the keyboard. Then click outside the input box once to close it again.

When starting a Time Series via Trigger, the **Start T** or **Start B** button must be pressed first. **Waiting for Trigger** will then be displayed in the status line.

Then the relevant trigger key on the Trigger Control must be pressed to start the first scan procedure of the Time Series.

When starting a Time Series via the time, the **Start T** or **Start B** button must also be pressed in this case. **Waiting for Start Time** will be displayed in the status line.

The Time Series is started when the starting time has been reached.

The starting time for the Time Series can be changed online.
(2) Stop Series panel

In this panel, the parameters for the end of the time series are set and the number of cycles is determined.

The following functions are available:

- **Manual button**: The time series is finished manually with a click on the Stop button.
- **Trigger button**: The time series is finished via a trigger signal.
- **Time button**: The time series is finished when the set time has been reached. The internal computer time applies as the set time.
- **Number input box / arrow keys / slider**: Determination of the number of images acquired or image stacks for the time series.
- **Time input box**: Input of the time for the end of the time series (Time button activated).
- **Trigger in list box**: Selection of the trigger keys (1-4) with which the end is to be triggered (Trigger button activated).
- **Trigger out list box**: Selection of the trigger keys (1-4) for the out signal.

- Use the slider near Number to select the images or image stacks for the time series.
(a) **Stop via Trigger**

To end the Time Series via Trigger Control (Trigger button activated), first determine the trigger key which is to end the Time Series.

- Open the Trigger in list box with a click on the arrow button.
- Choose one of the trigger keys 1 to 4 (e.g. Trigger2).

In this example, the Time Series is ended on pressing key 2 of the Trigger Control, and an out signal is given at the same time.

> If the entered number of cycles has been processed without a trigger impulse having been given to end the procedure, the Time Series is finished.

> If a trigger signal is given before the cycles have been processed, the Time Series will only be interrupted. **Waiting for Trigger** will be displayed in the status line. The Time Series can now be continued via a new trigger signal or ended via **Stop**.

(b) **Stop via Time**

To end the Time Series via the time set on the PC (Time button activated), the end time must first be entered in the Time input box.

- Click on the Time input box to open it.
- Enter the end time via the keyboard. Then click outside the input box once to close the box.

The Time Series is interrupted when the end time has been reached.

> If the entered **Number** of cycles has been processed, the Time Series is finished.

> If the number of cycles has not yet been processed, the Time Series is only interrupted. **Waiting for Start Time** is displayed in the status line. The Time Series can now be continued by entering a new start time, or finished via **Stop**.

The end time for the Time Series can be changed online.
(3) Time Delay / Time Interval panels

Depending on the settings in the Time Series tab (see Options menu, Settings), the time series interval is defined either as a Time Delay or Time Interval. Accordingly, either the Time Delay panel or the Time Interval panel is displayed in the Time Series Control window.

Time Delay is the interval between the end of one scan process and the beginning of the next.

Time Interval is the interval between the beginning of one scan process and the beginning of the next.

The Time Delay (or Time Interval) panel permits the intervals to be activated and changed.

The following functions are available:

- **Time delay** or **Time Interval** list box
 - List of the stored sets of time delays or Time Intervals for time series.

- **Apply** button
 - Application of the sets of delays for time series selected in the list box.

- **Store** button
 - Storage of sets of delays for time series.

- **Delete** button
 - Deletion of sets of delays for time series from the list box.

- **Time** buttons
 - Activation of the time for the time series set for the relevant button.

- **Time** input box / arrow buttons / slider
 - Determination of the cycle time for the currently activated Time button.

- **Unit** buttons
 - Selection of time units: min, sec or ms.

- **Trigger in** list box
 - Selection of the trigger key (1-4) to be used to activate the Time button for the delay time.

- **Trigger out** list box
 - Selection of the trigger key (1-4) for the out signal.
• The delay time or time interval to be used during the Time Series is set to a default value by activating a Time button. For this purpose, the relevant time must be assigned to the Time button first.
• Activate a Time button with a click of the mouse.
• Set the required delay time or time interval via the slider (arrow keys or input box) near Time. The set time is displayed online on the button. Select the time unit by clicking on the relevant button near Unit.

You can assign different times to all the six Time buttons and store this assignment either as a set of delays or of time intervals.
• Enter a name in the Time Delay list box or Time Interval list box and click on Store to store the set of delays.

If required, a set of delays or time intervals can be activated again quickly.
• Open the list box with a click on the arrow button and select the required set with a click of the mouse.
• Then click on the Apply button to activate the set. The stored delays are assigned to the Time buttons.

Sets of delays or Sets of time intervals which are no longer required can be deleted.
• Open the list box and select the required set.
• Click on the Delete button. The set will be removed.

The Time buttons can also be activated via keys 1 to 4 of the Trigger Control.
• Click on the required Time button.
• Open the Trigger in list box with a click on the arrow button.
• Choose one of the trigger keys 1 to 4 (e.g. Trigger3).

It is also possible to trigger an out signal via Trigger Control.
• Click on the required Time button.
• Open the Trigger out list box with a click on the arrow button.
• Choose one of the trigger keys 1 to 4 (e.g. Trigger3).

In this example, the relevant Time button is activated on pressing key 3 of the Trigger Control, and an out signal is given at the same time.
The delays or time intervals can be changed online with a click on another Time button. The new delay will be applied immediately.

A change of the delay during a Time Series is displayed in the Image Display window if the Gallery button (Display toolbar) is activated.

(4) Marker panel

The setting of a marker permits information about the moment in the current time series and any required comment to be assigned to the current scan. The time indication is set automatically, while comments must be defined before.

The markers (red squares) are visible in the Image Display window if the Gallery button (Display toolbar) is activated.

On storage of the image, all the markers, including the time indication and the comments, are stored along with the image contents.

The following functions are available:

- **Marker list box** List of the stored combinations of markers.
- **Apply button** Application of the marker combinations selected from the list box.
- **Store button** Storage of a combination of markers.
- **Delete button** Deletion of a combination of markers from the Marker list box.
- **Set 1-7 button** Setting of a marker during the scan procedure.
- **Description input box (1-7)** Entry of the comments for the marker.
- **Trigger in list box (1-7)** Selection of the trigger key (1-4) with which the marker is to be set.
- **Trigger out list box (1-7)** Selection of the trigger key (1-4) for the out signal.

- A marker for the current scan is set by clicking on one of the Set 1 to 7 marker buttons. The assignment of any required comment for the marker must be performed as follows:
 - Click in the Edit Text box of the required marker key (e.g.: Set 1) to open the editing box.
 - Enter the comments via the keyboard. Then click outside the editing box to close this box again.
You can assign comments of any required length to all the seven **Set** buttons and store this assignment as a combination of marker keys.

- Enter a name in the Marker list box and click on **Store** to store the combination.

If required, a combination of markers can be activated again quickly.

- Open the Marker list box with a click on the arrow button and select the required combination with a click of the mouse.

- Then click on the **Apply** button to activate the combination. The relevant comments are displayed in the **Edit Text** boxes of the **Set** buttons.

Combinations which are no longer required can be deleted.

- Open the Marker list box and select the required combination.

- Click on the **Delete** button. The combination will be removed.

The marker buttons can also be activated via keys 1 to 4 of the Trigger Control.

- Click on the required **Set** button.

- Open the **Trigger in** list box with a click on the arrow button.

- Select one of the trigger keys 1 to 4 (e.g. **Trigger4**).

It is also possible to trigger an out signal via Trigger Control.

- Click on the required **Set** button.

- Open the **Trigger out** list box with a click on the arrow button.

- Select one of the trigger keys 1 to 4 (e.g. **Trigger4**).

In this example, the relevant **Set** button is activated on pressing key 4 of the Trigger Control, a marker is set in the Scan and an out signal given at the same time.
5.5.6.3 **Time Series of a Frame**

- Set the relevant parameters for time control in the **Start Series, End Series** and **Time Delay** panels.
- Start the Time Series with a click on the **Start T** or **Start B** button.
- If you use Trigger Control, confirm the relevant Trigger key to start the Time Series with the first scan procedure.
- Use the **Set 1 to Set 7** buttons to set markers during the scanning procedure which will allow you to evaluate interesting scanning images later.

Time end will finish time series even if you have created a program which would exceed the time end.

Bleach times will be added.

No break is possible during bleaching.

If you want to integrate a bleaching procedure in a time series, start must be triggered via **Start B**. The bleaching procedure must be defined first in the **Bleach Control** window (see page 5-135).

If a time series is interrupted before its programmed end, the programmed number of images will be taken over in the database. However, only those images are stored which were created before interruption of the time series. This is due to the fact that the original image parameters are to be taken over via the **Reuse** function.

If a stop time for time series is entered via the **Trigger** button or the **Time** button, the recording of the series will not be definitely finished. It is possible to either continue the series via new settings of **Trigger** and **Time** or to definitely finish the time series via the **Stop** key.

The following example of a scanning image was taken using the **Time Series** function. Both the time and the markers set during the scanning procedure are projected in the image series in different colors.

If the cursor is moved to a marker position in the scanning image, the relevant information on the image detail is automatically provided in an additional window.
The image markers have different colors with the following meaning:

- red: manually set marker with time indication and comments
- blue: automatically set marker with change of delay
- green: automatically set marker at the beginning and at the end of a bleaching procedure

Fig. 5-97 Image Display window of a Time Series Scan
5.5.6.4 Time Series of a frame over Z Stack

- First, set all parameters required for recording a Z Stack in the Scan Control window.
- Then set the parameters required for recording the time series in the Time Series Control window (identical procedure as for the time series of a frame).
- Start the time series by clicking on Start T.
 - Complete stacks are now recorded at the defined time intervals. The result is displayed in the form of the combined Image Display window of the stack and time series (4D).

The additional Z, Time and Z + Time buttons are available in the Gallery toolbar of the Image Display window.
When you click on the Z button, the individual frames of the Z Stack are displayed for the selected Time Slice. When you click on the Time button, the individual frames of the time series are displayed for the selected Z Slice.

For Z Stacks over the time (4D) following offline functions will be enlarged:
- Slice (Z slider and Time slider)
- Gallery (Z, Time and Z + Time buttons)
- 3D (slider for single time index)

To select the Z or Time Slices, use the appropriate sliders which are displayed if the Slice button in the Image Display window has been activated.

When you click on the Z + Time button, all individual frames will be displayed.

5.5.6.5 Time Series of a frame over a Z Stack over Lambda

- Activate the META mode sheet in the configuration control and set the relevant parameters.
- Set the relevant parameters for the Start Series, End Series and Time Delay panels.
- Start the time series with a click on the Start T or Start B button.
5.5.6.6 **Time Series with Mean ROI**

- Set all the parameters in the same way as for Time Series of a frame.
- Then click on the **Mean ROI** button in the time series frame.

A mean intensity profile of the defined ROIs is created as a function of time.

![Image Display window of a Time Series with Mean ROI](image)

Fig. 5-100 Image Display window of a Time Series with Mean ROI

The **Image Display** window of the **Mean ROI** function is structured differently than that of a frame.

On the left-hand side of the **Image Display** window, the intensity time profiles per ROI are displayed graphically.

The **Select** and **Display** toolbars, which are also available in the standard **Image Display** window, are positioned in the center.

The **Scan Mean of ROIs** toolbar with further function elements is additionally displayed on the right-hand side. The major purpose of these function elements is to vary the display of the recorded Mean ROI.
By selecting the appropriate options (see **Options** menu, **Settings – Scan Mean of ROIs**) you can activate the following additional functions:

- Display of the live image in the **Image Display** window of the **Mean ROI** function (used ROIs only)
- Scan of the complete image (if **Live Image** has been activated)
- Saving of the complete time series (if **Live Image** has been activated)

The following functions are available:

<table>
<thead>
<tr>
<th>Button</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intensity values for ROI and Channels are displayed in a diagram. Chan button: Intensity values are displayed separately for each channel used. ROI button: Intensity values are displayed separately for each ROI used. Mono button: Switches between color and monochromic display of intensity profiles.</td>
</tr>
<tr>
<td></td>
<td>Automatic button: Automatic scaling of the display of Intensity-Time diagrams. Time Range button: Display of Intensity-Time diagrams is scaled depending on the Time Range set in the input box shown on the left. Number Times button: Display of Intensity-Time diagrams is scaled depending on the Number Cycle set in the input box shown on the left.</td>
</tr>
<tr>
<td></td>
<td>Show Image button: Shows the scan image in the Image Display window to the side of the intensity diagram. This button is active only if the Live Image option is activated. Copy Table button: The table of intensity values is copied to the clipboard. Show Table button: The table of intensity values is displayed at the bottom left of the Image Display window. Save Table button: The table of intensity values can be stored as a text file.</td>
</tr>
</tbody>
</table>
5.5.7 Edit Bleach

The use of this function permits the setting of bleaching parameters for spot, line or frame bleaching.

5.5.7.1 Open / Close the Edit Bleach window

- Click on the Edit Bleach button in the Acquire subordinate toolbar of the Main menu. The Bleach Control window appears on the screen.
- Click on the Close button to close the Bleach Control window.

5.5.7.2 Function description

The following functions are available on the right-hand side of the Bleach Control window:

- **Close** button: The Bleach Control window is closed.
- **Bleach** button: Starts the bleaching procedure.
- **Stop** button: Ends the bleaching procedure.

![Bleach Control window](image)
(1) Settings panel

The Settings panel allows you to determine when and how the bleaching process shall be done (only works in connection with time series).

Furthermore, all the settings of the Bleach Control window can be stored, reactivated or deleted in this panel.

Bleach after number scans: If this check box is ticked, the bleaching procedure is automatically performed in combination with a time series. Under Scan Number, you must enter after how many scanning procedures bleaching is to be performed.

Scan Number: Number of Scans in a time series, after performance of which the bleaching procedure shall be started.

Bleach repeat after number scans: If this check box is ticked, the bleaching procedure is automatically performed in combination with a time series. Under Scan Number, you must enter after how many scanning procedures bleaching is to be repeated.

Scan Number: Number of Scans in a time series, after performance of which the bleaching procedure shall be repeated.

Different Z Position: If this check box is ticked, you can set the current stage position as the one in which the bleaching will be done by clicking the Mark Position Z button. This function is only available using the Line or Frame scanning mode.

Different XY Spot Bleach Position: If this check box is ticked, you can set a different XY position for spot bleaching. This function is only available using the Spot scanning mode. Click on the Spot Select button in the Scan Control window. A new image is produced and two crosshairs appear in the image. The red crosshair marks the spot that will be imaged. The green crosshair marks the spot that will be bleached. Move the center of the crosshairs to the desired positions and perform bleaching.
Proceed as follows to store the entire settings of the **Bleach Control** window:

- Enter a name in the Settings list box and click on **Store** to store the settings.

If required, stored settings for the bleaching procedure can be reactivated quickly.

- Open the Settings list box with a click on the arrow button and select the required name with a click of the mouse.
- Then click on the **Apply** button to activate these settings. The **Bleach Control** window will be updated accordingly.

Settings which are no longer required can be deleted.

- Open the Settings list box and select the required name.
- Click on the **Delete** button. This stored setting will be removed.

The bleaching procedure can also be activated via keys 1 to 4 of the Trigger Control.

- Open the **Trigger in** list box with a click on the arrow button.
- Select one of the trigger keys 1 to 4 (e.g. **Trigger4**).

It is also possible to trigger an out signal via trigger control.
Bleach Parameter

Fig. 5-103 Bleach Parameter panel

- Enter the number of iterations of the bleaching procedure in the **Iterations** input box.
- Click on the **Define Region** button.

The definition of bleach regions corresponds to the **Edit ROI** function and is performed in the same way (see **Edit ROI**, page 5-116).

ROIs already defined with **Edit ROI** are also available in the **Bleach Regions** window. They can be activated directly, modified - if required - and stored under a new name.

Fig. 5-104 Bleach Regions window

- Define the required bleach regions in the scan image or use an existing ROI.
(3) **Excitation of Bleach Track panel**

In the **Excitation of Bleach Track** panel you can select the lasers and laser intensities for bleaching.

The setting of the lasers for the bleaching procedure corresponds to that for the scanning procedure and must be performed accordingly (see **Laser Control**, **Configuration Control** and **Scan Control**).

- Select the required laser wavelength and its intensity under **Excitation**.
- If required, switch the relevant laser to **On** (**Laser** button).

![Excitation of Bleach Track panel](image)

(4) **Start / End a bleaching procedure**

- The bleaching process will be started via the **Bleach** button. However, it is also possible to start the bleaching process via the **Bleach** button in the **Time Series Control** window or to combine it with a time series.

When a trigger key is activated to start the bleaching procedure, the **Waiting for Trigger** message first appears in the status line of the **Bleach Control** window. In that case, the bleaching procedure is started after activation of the relevant trigger key.

- The bleaching process can be finished via **Stop** in the **Bleach Control** window.

Stop does not only stop the bleaching process, but the entire scanning process.
5.5.8 Stage

The following software description applies to systems which are equipped with a motorized stage.

This window enables you to activate both the motor focus and the scanning stage.

The **Focus Position** and **Stage Position** panels include the function keys for the performance of defined moves and the display of the current Z and X, Y positions.

By use of an LSM 510 META scanhead on an Axiovert 200 MOT sideport system care should be taken when moving the motorized XY scanning stage to the maximum positions, so that fingers are not bruised between scan head and stage.

5.5.8.1 Open / Close the Stage and Focus Control window

- Click on the Stage button in the Acquire subordinate toolbar of the Main menu. The Stage and Focus Control window appears on the screen.
- Click on the Close button in the Stage and Focus Control window to close this window.

5.5.8.2 Function description

The following functions are available on the right-hand side of the Stage and Focus Control window:

- **Close** button: The Stage and Focus Control window is closed.
- **Start** button: Starts the tile scanning procedure.
- **Stop** button: Ends the scanning procedure.
(1) **Focus Position panel**

Focus buttons (Z Moves)

Clicking on the **Up** arrow button moves the specimen stage / nosepiece upwards.

Clicking on the **Z** button sets the current Z-position to zero.

Clicking on the **Down** arrow button moves the specimen stage / nosepiece downwards.

Focus Step slider

0.1 µm is the smallest value which can be set, and 100 µm the highest.

Clicking on the arrow keys changes the step size by 1 µm.

Pressing the **CTRL** key and clicking changes the step size by 0.05 µm.

Pressing the **Shift** key and clicking changes the step size by 10 µm.

Work button

Pressing the **Work** button moves the specimen stage / nosepiece back to the Work position. This is the position last set before the **Load** button was pressed.

Load button

Clicking on the **Load** button lowers the specimen stage / nosepiece to make it easier for you to change the specimen (or objective).

Focus Wheel check box

Clicking on this check box activates / deactivates the focus wheel of the microscope.
Use of the optional HRZ 200 fine focusing stage or piezo objective focusing device

The **HRZ Step** slider is used to set the step width of the fine focusing stage.

Use the arrows of **HRZ** to move the fine focusing stage upwards or downwards in steps.

As soon as the focus position is changed (via handwheel or software), the HRZ 200 stage is automatically leveled.

A click on the **L** button moves the HRZ 200 fine-focusing stage in the center position of its travel range and the focus position is reset accordingly. Therefore, the same Z-level remains visible (the current position is not set to zero).

The motor focus of the stand is operated in the same way via the relevant buttons. Moving into the **Work** or **Load** position is always performed via the motor focus and not via the HRZ stage.

Please see the annex for further information on the HRZ 200 fine focusing stage: Hints on the use of the HRZ 200 fine focusing stage.

(2) **Stage Position panel**

The **Stage Position** panel shows a symbolic specimen carrier in the left upper.

The buttons for moving to a position and mark it are below or on its right.

The **Current Position** display for X and Y is below.

Below that, you will find the **Marks** selection box of marked positions and the possibility to activate and delete them.

Moving the scanning stage

The scanning stage can be moved using the joystick, or software-controlled using the **Stage XY** buttons, or manually.

Stage XY buttons

Clicking on the arrow buttons moves the stage in X or Y direction.

Clicking on the **Center** button moves the stage in the XY = 0 position.
XY Step slider

1 µm is the smallest value which can be set for XY movement, and 100 µm the highest.

Manual check box

This check box activates / deactivates the motor control of the stage and the joystick, if available.

If **Manual** is active, the scanning stage can be moved manually via the knurled screws. The **Move To** and **Center** function buttons in **Stage Position** are without a function. The **Current Position** is updated. You can zero the display via **ZERO** and mark manually set positions (**Mark pos.**).

The scanning stage cannot be moved via the software or the joystick.

If **Manual** is deactivated, the scanning stage can be moved via the software or the joystick. All the functions of the **Stage Position** window are available.

Current Pos(ition) field

Current Pos displays the currently set stage position in relation to the zero position.

Marks selection box

Clicking on the arrow button displays the table of the session-related marked specimen areas. The table includes the ordinal number, the X-position and the Y-position. Click on the appropriate mark to select it for operation.

Move To button

Clicking on the **Move To** button moves the stage to the position selected before from the **Marks** selection box.

Remove

The **Remove** command enables a selected position to be deleted from the table. The position then also disappears from the specimen carrier display.

![The selected position is deleted, the position with the next number in sequence moves up one number.](image)

Remove All

The **Remove All** command deletes all the entries marked in the current session.
Speed selection box

Clicking on the arrow key displays the table of the available speeds for stage movement. Click on the appropriate speed to select it for operation.

Zero button

Zeros the **Current Position** display and thus sets the currently set stage position to 0 in relation to X and Y. The already marked object areas thus receive new X and Y-coordinates.

Mark Pos. button

Mark Pos. allows the **Current Position** to be marked. This marked position is then stored in the **Marks** selection box in sequence. The marked position is shown on the specimen carrier with a cross and its ordinal number.

HRZ Zero button

Zeros the **Current Position** display and thus sets the currently set stage position to 0 in relation to X and Y. The already marked object areas thus receive new X and Y-coordinates.

(3) **Tile Scan panel**

This function permits a frame to be created as an overview image of the specimen with a maximum size of 4096 x 4096 pixels. According to settings, such a frame is divided in XY-tiles of 1 x 1 to the maximum of 15 x 15. A tile of special interest (target) can then be selected for scanning.

The application of the **Tile Scan** function requires an objective with a minimum magnification factor of 2.5x.

Tiles Numbers X / Y input box

Input of the number of tiles for X or Y from which the frame is to be composed.

Tile Size X / Y display

Display of the size of a single tile in µm (corresponds to the value selected in the **Scan Control** window).
Frame Size X / Y display
Display of the frame size of the tile scan for X or Y. Specification in pixels and µm.

Move To button
If the Move To button is activated, a rectangle with a target allowing the selection of the region of interest is positioned in the center of the scanned frame. Click and hold down the left mouse button to drag the rectangle to the required specimen area. When you release the mouse button, the stage moves to the selected position.

Mark button
If the Mark button is activated, marks previously set in the Tile Scan image are displayed, and further marks can be added at spots of special interest by a mouse click in the Tile Scan image. By activating the Move To button, the stage can be moved to the individual marks set in Tile Scan in the same way as it is moved to the marks set in the Stage Position panel.

- Set the number of tiles for the frame in the Tiles Numbers X / Y input boxes of the Tile Scan window.
 - The resulting frame size is displayed on-line.
- Click on Start.
 - The overview frame is scanned and displayed on the screen in a new Image Display window.
• Activate the **Move To** button.

• In the tile scan image, move the target to the required spot of the frame (dragging with the mouse).
 - The microscope stage then travels to the selected position.

Or:

• Activate the **Mark** button.

• Set a mark at the spot of interest by clicking with the mouse in the Tile scan image. A cross with the consecutive number of the mark is displayed in the Tile scan image. The new mark is also displayed in the specimen carrier (**Stage Position** panel) and included in the **Marks** selection box.

• Select the mark in the **Marks** selection box and click on the **Move To** button in the **Stage Position** panel. The stage moves to the selected position.
• Then click on the **Single** button in the **Scan Control** window to scan the selected area as a single image.
 - The single image is scanned and displayed in a new **Image Display** window.

Overlay functions cannot be activated in the **Tile Scan Image Display** window.

The created overview frame can then be stored like any other scan image. If a stored overview frame is opened again, the rectangle with target will appear again. However, it can be deleted using the **Overlay** function.

5.5.9 VIS, TV and LSM Buttons

The **VIS**, **TV** and **LSM** buttons are included in the **Acquire** subordinate toolbar of the **Main** menu. They switch the beam path and indicate which beam path has been set in the binocular tube of the microscope:

- **VIS**: observation via the eyepieces of the binocular tube, lasers are off
- **TV**: camera observation (if connected) via camera adapter of the binocular tube
- **LSM**: screen observation via laser excitation using the LSM 510 and software evaluation

- If the beam path of the microscope is changed manually via tube slider (only Axioplan 2 imaging MO'T and Axioskop 2 FS MO'T), this is recorded by the software and the relevant button is activated automatically.
- If, vice versa, the beam path is "switched" via activation of a button in the software, a message window is displayed informing you that the beam path must be switched mechanically first before you can continue to work (only Axioplan 2 imaging MO'T).
5.6 Process Menu

- In the Main menu toolbar, click on Process.
 - This opens another, subordinate toolbar in the Main menu.

The functions of the Process menu permit already stored scan images to be subsequently linked and processed using mathematical functions and algorithms.

5.6.1 Add

The Add function links two channels each of one or two images into a new channel through addition. The channel created in this way can be stored via the Save As function. (This also works with extracted META channels.)

5.6.1.1 Open / Close the Add window

- Click on the Add button in the Process subordinate toolbar of the Main menu.
 - This opens the Add window.
- Click on the Close button to quit the Add window.
5.6.1.2 Source panel

In the Source 1 panel, the first image source for the addition process is determined. The current image is displayed in the display box of the image selection box.

Proceed as follows to select an image via the image selection box:

- Click on the arrow button. The image selection box is opened and all the currently loaded images are displayed in a minimized form.
- Click on the required image. This image will then appear in the display box of the image selection box and has been selected as Source 1.

Use the Click into window button to directly select the opened image:

- Click on the Click into window button first and then double-click on the relevant Image Display window. The selected image will then be displayed in the display box of the image selection box and has been activated as Source 1.

The channel which is to be used for the Add operation is selected via the Channel selection box:

- Click on the arrow button. The Channel selection box is opened and shows all the recorded channels of the relevant image.
- Click on the required channel to activate it.

In the Source 2 panel, the second image source for the addition process is determined. The procedure is identical to that for Source 1.

- Select the image for Source 2 and the relevant channel.
5.6.1.3 Destination panel

In the Destination panel, it is determined in which Image Display window the Add operation is performed, and the data format which the newly created image shall have.

The Add operation can be performed in an already opened window or in a new Image Display window.

- Click on the arrow button of the image selection box to open this box.
- Click on the relevant image if the Add operation shall be performed in an existing Image Display window.
 or
- Click on New Image 8 bit or New Image 12 bit to use a new Image Display window.

You can also use the Click into window button for image selection.

Clicking on the New 8 bit or New 12 Bit button enables you to determine directly and quickly whether the new image is to be created in the 8-bit or 12-bit format.

If an existing Image Display window is used to perform the Add function, you must determine whether an existing channel shall be overwritten with the Add operation or whether a new channel shall be added.

- In the Channel selection box, click on the channel which shall be overwritten, or click on New for a new channel.

5.6.1.4 Add panel

In the Add panel, the currently set formula for the Add operation is displayed. The editable input boxes permit the formula to be changed with any numeric values.

- Click in the required input box and enter the relevant value.
- Click on the Apply button to perform the operation in the activated window or a new Image Display window.
- The new image can then be stored via the Save As function.
5.6.1.5 Preview panel

The Preview function enables you to preview the result of the defined Add operation in a preview window.

- Activate the **Preview** check box with a click of the mouse. The **Add - Preview Image Display** window is displayed with the operation result.

- Deactivate the **Preview** check box to close the **Add - Preview Image Display** window.

After a change of the formula in the **Add** panel, click in the **Add - Preview Image Display** window for an update.

5.6.2 Subtract

The Subtract function links two channels each of one or two images into a new channel by subtraction. The channel created in this way can be stored via the **Save As** function.

5.6.2.1 Open / Close the Subtract window

- Click on the **Subtract** button in the Process subordinate toolbar of the **Main** menu.
 - This opens the **Subtract** window.

- Click on the **Close** button to quit the **Subtract** window.

5.6.2.2 Performance of the Subtract function

This function is performed in the same way as the **Add** function (see **Add**, page 5-148). The only difference is that the mathematical formula is based on subtraction.
5.6.3 Multiply

The Multiply function permits two channels each to be linked into a new channel by multiplication. The channel created in this way can be stored via the Save As function.

5.6.3.1 Open / Close the Multiply window

- Click on the Multiply button in the Process subordinate toolbar of the Main menu.
 - This opens the Multiply window.
- Click on the Close button to quit the Multiply window.

5.6.3.2 Performance of the Multiply function

This function is performed in the same way as the Add function (see Add, page 5-148). The only difference is that the mathematical formula is based on multiplication.
5.6.4 Ratio

The Ratio function permits two channels to be linked into a new channel by the creation of a ratio. The channel created in this way can be stored via the Save As function.

5.6.4.1 Open / Close the Ratio window

- Click on the Ratio button in the Process subordinate toolbar of the Main menu.
 - This opens the Ratio window.
- Click on the Close button to quit the Ratio window.

5.6.4.2 Performance of the Ratio function

This function is performed in the same way as the Add function (see Add, page 5-148).

However, three different formulas can be used for ratio creation, each of which can be activated by clicking on the button.

Fig. 5-119 Ratio window
5.6.5 Copy (Channel)

The Copy function permits one channel each of an existing image to be copied and stored as a new image.

The selection of Source, Channel and Destination is made in the same way as in the Add function (see Add, page 5-148).

5.6.5.1 Open / Close the Copy window

- Click on the Copy button in the Process subordinate toolbar of the Main menu.
 - This opens the Copy window.
- Click on the Close button to quit the Copy window.

5.6.5.2 Performance of the Copy function

- Select Source, Channel and Destination and then click on the Apply button.
 - The image of the copied channel is then displayed in a new window or in the Image Display window activated for it.
- The new image can be stored via the Save As function.

Fig. 5-120 Copy window

- For Z Stacks or Time Series, the entire series of the selected channel is copied.

5.6.6 Duplication (Image)

This function permits images (including Z Stacks and Time Series) to be duplicated completely.

- If several images have been opened, select the image to be duplicated.
- Click on the Dup button in the Process subordinate toolbar of the Main menu.
 - The selected image is duplicated and displayed in a new Image Display window.
- Use the Save As function to store the image under a new name.
5.6.7 Filter

The filter function permits the subsequent processing of scanned images via the integrated **Lowpass**, **Sharpness** and **Median** filters. Furthermore, **User-defined** filters can be installed by the user. User-defined filters can be stored, reloaded and removed.

5.6.7.1 Open / Close the Filter window

- Click on the **Filter** button in the **Process** subordinate toolbar of the **Main** menu.
 - This opens the **Filter** window.
- Click on the **Close** button to quit the **Filter** window.

5.6.7.2 Image panel

In the **Image** panel, the image or channel to be processed is selected.

The currently selected image is displayed in the image selection box.

Proceed as follows to select an image via the image selection box:

- Click on the arrow button. The image selection box is opened and all the currently loaded images are displayed in a minimized form.
- Click on the required image, which will then appear in the display box of the image selection box and will be available for filtering.

You can also use the **Click into window** button to select the image.

- Open the **Channel** selection box with a click on the arrow button and select the channel to be processed.
5.6.7.3 Filter List and Edit panel

In the Filter List panel, the filters and the matrix size (Kernel Size) are selected. The matrix of the selected filter and the set filter parameters Factor, Divisor and Offset are displayed in the Edit panel.

(1) Kernel Size

The size of the filter matrix can be modified here. The effect of a filter increases along with the matrix size. However, this also increases the time required for filtering.

- Select the required matrix size by clicking on one of the selection buttons 3 x 3, 5 x 5 or 7 x 7.

(2) Lowpass filter

With the lowpass filter, the gray value of each center pixel is replaced with the average value of the surrounding neighbor pixels. The viewed neighbor pixels are defined by a square. The modified pixel now is the center pixel of the filter matrix.

Image noise will be reduced by the application of the lowpass filter. The cutoff of regions will blur. Local maxima will be flattened. The dynamic range will be reduced considerably.

This filter permits the matrix size to be modified only in the 3 preset steps.
(3) Sharpness filter

With the sharpness filter, the original image is filtered with a lowpass filter first. The result of this filtering is then subtracted from the original image. This will improve image sharpness.

The matrix size can be modified in the 3 preset steps.

Furthermore, divisor values ranging from 1 to 78 can be entered. The higher the divisor value, the lower the image sharpness.

(4) Median filter

With the median filter, the gray value of each center pixel is replaced with the median value of the surrounding neighbor pixels. The viewed neighbor pixels are defined by a square. The modified pixel now is the center pixel of the filter matrix.

The median value is defined as the middle value (not average) of all the gray values sorted in ascending order within a matrix.

Image noise will be reduced by the application of the median filter. The cutoff of regions will slightly blur. Local maxima will be flattened. The dynamic range will be reduced considerably.

The settings of this filter can not be modified.
(5) User-defined filter

The **User-defined** function permits you to create your own filters. In addition to the **Kernel Size**, the parameters **Factor**, **Divisor** and **Offset** can be modified here.

The filter result can be subtracted from the original image via the **Subtract from Source** check box.

Proceed as follows to store **User-defined** filters:
- Click on the **Add To List** button and enter a name in the **Add Filter To List** window. The name will be included in the **Filter List**.

Proceed as follows to activate stored, **User-defined** filters:
- Click on the name of the filter in the **Filter List**. The filter will then be activated immediately.

Proceed as follows to delete **User-defined** filters:
- Click on the name of the filter in the **Filter List** and then on the **Remove** button. The filter will be deleted.

- After selection of the required filter, click on the **Apply** button to start the filter procedure.
 - Filtering will be performed and displayed in the current **Image Display** window.
- In the case of images with several channels, activate the **xy** button in the **Display** image toolbar to display all the channels. Each channel must be filtered separately.
- Use the **Save As** function to store the newly created image.
5.6.7.4 Preview panel

The Preview function allows you to have the result of the Filter operation displayed as a preview image.

- Activate the Preview check box with a click of the mouse. The Filter - Preview Image Display window with the filter result will be displayed.
- Deactivate the Preview check box to close the Filter - Preview Image Display window.

After a change of the filter settings, click in the Filter - Preview Image Display window once to update it.

5.6.8 Contrast

The Contrast function permits the subsequent modification of contrast and brightness of the stored image.

- Open the image to be processed and click on the Contrast button.
 - The function is performed with firmly set parameters and the result is displayed in a new Image Display window. The procedure can be repeated as often as required.
- The newly created image can be stored using the Save As function.
5.6.9 Interpolate

This function permits the continuous contrast and brightness change in a stack or Time Series through interpolation between the starting and end values. This permits the subsequent compensation of specimen bleaching which occurred during image recording. Interpolation can be defined for the entire image or only for individual channels.

5.6.9.1 Open / Close the Interpolate Brightness and Contrast window

- Click on the Interpolate button in the Process subordinate toolbar of the Main menu (also see page 5-148).
 - This opens the Interpolate Brightness and Contrast window.
- Click on the Close button to quit the window.

5.6.9.2 Image panel

The image to be processed is selected in the Image panel.

The currently selected image is shown in the display box of the image selection box.

Proceed as follows to select a series via the image selection box:

- Click on the arrow button. The image selection box will be opened and all the currently loaded images will be displayed in a minimized form.
- Click on the required image, which will then appear in the display box of the image selection box and has been selected for the interpolation procedure.

You can also use the Click into window button for image selection.
5.6.9.3 Interpolation panel

In the Interpolation panel, the parameters for the interpolation procedure are set.

- Use the **Start Image** slider to select the slice at which the interpolation procedure shall start. Clicking on the **First** button permits the fast selection of the first slice in the series.
- Use the **Brightness** and **Contrast** sliders to set the image brightness and contrast for the first slice (**Start Image**).
- Use the **End Image** slider to select the slice at which the interpolation procedure shall end. Clicking on the **Last** button permits the fast selection of the last slice in a series.
- Use the **Brightness** and **Contrast** sliders to set the image brightness and contrast for the last slice (**End Image**).
- Use the available Channel buttons (e.g.: Ch1) to select the channel for interpolation or click on the **All** button if the entire image is to be interpolated.
- Having set the parameters, click on the **Apply** button. Interpolation will be performed in a new **Image Display** window.
- The newly created image (series) can be stored using the **Save As** function.

If you activate the **Overwrite Source Images** check box, interpolation will be performed in the current **Image Display** window.

If you activate the **Ignore Images less than "Start Image" and greater than "End Image"** check box, only the slices lying between Start Image and End Image will be taken into consideration for interpolation. Otherwise, brightness and contrast will also be changed for the other slices.
5.6.9.4 Preview panel

The Preview function enables you to see the result of interpolation for one slice each in a preview window.

- Activate the Preview check box with a click of the mouse.
 - The Interpolate C&B - Preview Image Display window will be displayed. At the same time, the Slice slider with the relevant input box and arrow keys and the two buttons Start and End are displayed in the Preview panel.
- Use the slider or input box/arrow keys to set the slice which shall be displayed in the preview window.
- Clicking on the Start or End button permits the fast activation of the Start Image or End Image for previewing.
- Deactivate the Preview check box to close the Interpolate C&B - Preview Image Display window.

5.6.10 Channel Shift

The Channel Shift function is used to produce a congruent image with relation to the pixels of the various channels. This pixel correction function is particularly important in UV applications.

5.6.10.1 Open / Close the Channel Shift window

- Click on the Shift button in the Process subordinate toolbar of the Main menu.
 - This opens the Channel Shift window.
- Click on the Close button to quit the window.
5.6.10.2 Image panel

- Click on the arrow button. The image selection box will be opened and all the currently loaded images are displayed in a minimized form.
- Click on the required image, which will then appear in the display box of the image selection box and has been selected for the Shift function.

You can also use the Click into window button for image selection.

5.6.10.3 Shift panel

- Select the channels required for processing in the Shift box by clicking on the Ch1 or Ch3 buttons. A tick will appear in the button when the channels are activated.
- Use the scrollbar or the ← and → buttons to select the pixel shift in the horizontal and vertical direction.
- Click on the Apply button to activate the setting.

5.6.10.4 Preview panel

- If Preview is activated, a preview of the shift is shown in a separate Image Display window.
The following image shows the result of a pixel shift via the **Shift** function. This image change can be stored in the image database via the **Save** or **Save As** buttons.

Fig. 5-136 Image Display window with channel shift

For applications requiring 3- or 4-channel scanning, proceed in the same way as described for the 1- or 2-channel mode.
5.6.11 Unmix

The Unmix functionality permits to extract the emission of single fluorescence dyes (e.g. GFP only, YFP only etc.) from the overall emission band of strongly overlapping multifluorescence signal intensities by a pixelwise linear unmixing procedure.

Mathematically, experimental fluorescence spectra of monolabelled samples are taken as an external reference. Up to 8 different reference signals can be varied in this least-square-fit based algorithm to produce an 8 channel multifluorescence stack without any partial overlap between the channels.

5.6.11.1 Open / Close the Unmix window

- Click on the Unmix button in the Process subordinate toolbar of the Main menu.
 - This opens the Linear Unmixing window.
- Click on the Close button to quit the Unmix window.

5.6.11.2 Source panel

In the Source panel the image source for the linear unmixing process has to be defined.

This has to be a Lambda Stack, a Lambda Stack Z series or a Lambda Stack T series.

Proceed as follows to select an image via the image selection box:

- Click on the arrow button. The image selection box is opened and all the currently loaded images, stacks, time series with a Lambda dimension are displayed in a minimized form.
- Click on the required image. This image will then appear in the display box of the image selection box and has been selected.
5.6.11.3 Definition of Channels panel

In the Channels panel the number of reference spectra (number of fluorescence channels) can be selected from the channel selection boxes.

- Select the references fluorescence dye spectra which are present in the sample with the check boxes.
- If necessary change the colors of the relevant fluorescence channel.
- If no predefined reference spectra exist, please define reference signals via the **Save to Spectra DB** button in the **Display - Mean** functionality (see page 5-343).
- After definition of the required reference spectra set click on the **Apply** button.
- A new window with the resulting channels of the unmixing procedure opens immediately.

Try to avoid saturation of fluorescence signals in the stack to be unmixed.

To get the highest quality unmixing results, please define an extra background channel, if possible.

Handling of Reference Spectra

- **Reference Spectra** used for Linear Unmixing are stored with result images
- ReUsable and storable via **Load from Image** and **Write to DB** buttons
- New file type *.umx for **Save** and **Load** of combinations (configurations) of **Reference Spectra**

![Handling of Reference Spectra](image-url)
OPERATION IN EXPERT MODE

LSM 510

LSM 510 META

Unmix

Fig. 5-138 Image Display window before unmixing

Fig. 5-139 Image Display window after unmixing
5.6.12 Ion Concentration

The use of this function (option) permits the calibration of ion concentrations in physiological experiments.

(1) Open / Close the Ion Concentration window

Click on the **Ion Conc** button in the **Process** subordinate toolbar of the main menu.

Click on the **Close** button.

(2) Function description

Ion Conc button Activates the Ion Concentration menu.

Source window Selects input of images to be processed.

Destination window Select output and pixel depth of processed image.

Calibration window Sets the six different calibration options, according to the dyes used (single wavelength, ratiometric) and required method.

Show Curve button Shows resulting calibration curve.

Image scaling window Sets min. and max. concentration.

Preview window Activates **Preview** function.
(3) Single wavelength dyes – offline Calibration

- Subtract background/autofluorescence image from raw images to obtain
- Perform equation- or titration calibration (compare F with a calibration curve -> titration calibration or put F values in calibration formula)
(4) **Ratiometric Dyes**

- Fura-2, Indo-, SNARF, Cameleon, Ratiometric Pericam, Phluorin, ...

- Display fluorescence ratio R over time
- Display fluorescence ratio R corrected for background/autofluorescence over time
- Calculate absolute ion concentrations (pixel by pixel) via titration calibration (known ion concentrations applied to the cells – in situ – or in solutions – in vitro or equation calibration where possible [Fura-2, Indo-, SNARF]

- Calculation of R eliminates artifacts and uncertainties caused by
 - inhomogenous dye distribution
 - photobleaching
 - may be applied with moving cells

(5) **Ratiometric Dyes - Online ratio**

\[R_{(t1)} = \frac{F_{1(t1)}}{F_{2(t1)}}, \quad R_{(t2)} = \frac{F_{1(t2)}}{F_{2(t2)}} \cdots \]
(6) **Ratiometric Dyes - Calibration**

- Subtract background/autofluorescence images from raw images to obtain
 \[R_{\text{corr}} = \frac{F_1 - F_1\text{Background}}{F_2 - F_2\text{Background}} \]
 when calibration reference is not obtained with the experimental sample (in situ)
- Calculate ratio \(R \)
- Perform equation- or titration calibration (compare \(R \) with a calibration curve -> titration calibration or put \(R \) values in calibration formula)
(7) **Ratiometric Dyes - Equation Calibration (Gryniewicz)**

Fura-2, Indo-1, ...

K_D (dissociation constant) taken from literature

R_{min}: derived from ion-free state of the dye (e.g. 0 Ca$^{2+}$)

R_{max}: derived from ion-bound state of the dye (e.g. saturated with Ca$^{2+}$)

$F_{\text{min}2}$ and $F_{\text{max}2}$ are the minimum and maximum fluorescence intensities at wavelength 2

R_{min}, R_{max}, $F_{\text{min}2}$ and $F_{\text{max}2}$ may be determined in the cells under investigation (in situ) or in solutions (in vitro)

Calibration parameters may be saved and reloaded (*.cal)
(8) Options for Calibration Image Selection (equation- or titration calibration)

- Click into image window.
- Select source channel(s).
- Optional background subtraction
- Optional calculation of parameters from overlay region(s)
5.6.13 3D DeConvolution (DCV)

The 3D Deconvolution option is used for the resolution enhancement of fluorescence image stacks.

5.6.13.1 Background

When a three-dimensional object is reproduced by an optical system the resulting image of the object does not correspond exactly to the object's actual form. The image of the object is "distorted" as it passes through the optical system. In physical terms the actual object is convolved by the optical system's Point Spread Function (PSF).

![Image of PSF convolution](image)

The Point Spread Function describes how the light of a point object is distorted by the optical system. This "convolution" makes the image appear grainy and structures in the image seem blurred. This effect is most prominent in the axial (Z-)direction as each lens is optimized for the two-dimensional image of the object.

If the PSF is known it is possible to use mathematical algorithms to undo this distortion. The image of the object is deconvolved using the PSF and the actual form is reconstructed:

![Image of deconvolution](image)

The effect of 3D deconvolution can be demonstrated impressively on objects with a known form. As a rule fluorescent beads are used for this purpose. The following figure shows the 3D deconvolution of an image stack with a fluorescent bead with a diameter of 1 µm.
As the resolution of an optical system is significantly lower in the axial direction than in the lateral (X/Y-)direction, the greatest improvement in resolution can be achieved in the Z-direction.

The Z Stack must meet the following requirements:

- At least two-fold oversampling in xyz (z: half of optimal interval button)
- High signal-to-noise ratio
- Detector gain < 500 V

Calculation is either made for one channel of the opened image which must first be selected accordingly, or for all channels of a stack.

Calculation is started via Apply and can be stopped using the ESC key, if required.

5.6.13.2 Open / Close the 3D Deconvolution window

- Click on the DCV button in the Process subordinate toolbar of the Main menu (also see page 5-148).
 - This opens the 3D Deconvolution window.
- Click on the Close button to quit the window.
5.6.13.3 Source panel

The image to be processed is selected in the Source panel. The currently selected image is shown in the display box of the image selection box. Proceed as follows to select a image via the image selection box:

- Click on the arrow button. The image selection box will be opened and all the currently loaded images will be displayed in a minimized form.
- Click on the required image, which will then appear in the display box of the image selection box and has been selected for the interpolation procedure.

You can also use the Click into window button for image selection.

5.6.13.4 Deconvolution panel

The Deconvolution panel contains the two tabs Method and PSF.

(1) Method tab

The Method tab permits selection between the calculation methods Nearest Neighbour, Inverse and Iterative.

(a) Nearest Neighbor

The Nearest Neighbor method is the simplest and fastest algorithm which in principle corresponds to a 3D sharpness filter.

(b) Inverse Filter

The regularized inverse filter generally achieves better results than the Nearest Neighbor algorithm. It is well suited to process several image stacks for a preselection of images for the use of the iterative high-end methods.
(c) Constrained Iterative

The best image quality is achieved using the Constrained Iterative Maximum Likelihood Algorithm. Increasing the resolution in the image, especially in the Z-direction, is only possible with this method. Due to the complex mathematical method, depending on the image size and the PC being used the calculation can take up to several hours.

In the Inverse method, the Restoration Effect slider permits the noise-to-signal ratio to be selected between the settings Weak (low noise) and Strong (pronounced noise).

Activation of the Auto detect check box will start a routine for the automatic determination of the noise level in the entire image part of the Z Stack (not available in the Nearest Neighbour method). If Auto detect is enabled, the Restoration Effect slider is disabled.

The Iterative method permits (in addition to the parameters of the Inverse method) the maximum number of iterations to be entered between 1 and 200 under Maximum Iterations and the Auto Stop function to be activated / deactivated. The Auto Stop function interrupts the calculation depending on the set image improvement (delta between last but one and last cycle in %), no matter whether the value under Maximum Iterations has been achieved or not.

The Nearest Neighbour method permits entry of the Number of Neighbours and the Sharpness in Focus value in addition to the Restoration Effect.

(2) PSF tab

In the 3D Deconvolution option a theoretical point spread function (PSF) is calculated from the systems settings (objective data, wavelengths, pinhole diameter).

The PSF data are displayed in the Method tab. In the case of wavelengths above 700 nm, the NLO button is automatically enabled.

The displayed values are always taken over by the system data, but can be edited subsequently for simulation purposes.
5.7 3D View Menu

The 3D View functions serve to record and play back series of images for 3D display of microscopic structures.

- In the **Main** menu toolbar, click on **3D View**.
 - This opens another, subordinate toolbar in the **Main** menu.

5.7.1 3D DepthCod

(Color Coded Depth Map)

By means of the **Depth Coding** function, the depth information contained in a sequence can be colored with the colors of the rainbow, in which case "blue" stands for front and "red" stands for rear.

A stack of images must be available.

5.7.1.1 Open / Close the Depth Coding window

- Click on the **DepthCod** button in the **3D View** subordinate toolbar of the **Main** menu.
 - This opens the **Depth Coding** window.
- Click on the **Close** button to quit the window.
5.7.1.2 Source panel

In the Source panel, the image source is selected. The currently selected image is displayed in the display box of the image selection box. Proceed as follows to select an image via the image selection box:

- Click on the arrow button. The image selection box will be opened and all the currently loaded images are displayed in a minimized form.
- Click on the required image, which will then be shown in the display field of the image selection box and be available for the following operation.

The Click into window button enables you to select the opened image directly:

- Click on the Click into window button first and then double-click on the relevant Image Display window. The selected image will then be shown in the display box of the image selection box.

Select the channels to be processed via the Channel selection box:

- Click on the arrow button to open the selection box. Click on the required channel to activate it.

5.7.1.3 Depth Coding panel

- On the Depth Coding panel you can set the desired parameters. Activate the Scale Bar check box if you want a color scale to be shown.

(1) Depth Coding tab

Mode Front View: The image is viewed from the front / above when this option is activated.

Mode Rear View: The image is viewed from the rear / below when this option is activated.

Threshold: All brightness values below the Threshold (range: 0 to 255) are ignored or treated like 0 when determining the depth and the display.

Contrast: Defines the factor with which the contrast of the overlaid series affects the contrast of the depth-coded color.

Brightness: Defines the factor with which the brightness of the overlaid series affects the brightness of the depth-coded color.

Display Scale Bar: Displays a colored scale in the image.

Display Grey level: The depth information is displayed in gray levels.
(2) **Transparency tab**

Mode Maximum: The color is defined by the z position of the brightness value.

Mode Transparent: The transparent projection is built up from the rear to the front. The color is defined by the Z position at which the original was last higher than or equal to Threshold.

Mode Keep Maximum: Activating this option modifies the specification governing calculation of the projection.

Threshold: Pixel value at which the ramp rises (variable from 0 to 100 %).

Ramp: Slope of the ramp (variable from 0 to 100 %; 0 % corresponds to a vertical rise).

Maximum Opacity: Degree of visibility at the top corner of the ramp (variable from 0 to 100 %; 0 corresponds to the bottom edge in the diagram).

5.7.1.4 Preview panel

The **Preview** function permits you to regard the influence of parameter changes in an **Image Display** window.

- After finding the optimum adjustment using the **Preview** function, you have to generate the final version of the image using the **Apply** button.
 - The system then generates a color-coded depth map for the selected channel.
5.7.2 Projection

By means of the Projection function, one single projection or a series of projections can be calculated after rotation of the data package about the X, Y or Z axis.

A stack of images must be available.

5.7.2.1 Open / Close the Projection window

- Click on the Projection button in the 3D View subordinate toolbar of the Main menu.
 - This opens the Projection window.
- Click on the Close button to quit the window.

5.7.2.2 Source panel

- Select the image for the projection operation from the image selection box.

5.7.2.3 Projection panel

- On the Projection panel, set the parameters needed for the animation: Turning Axis, First Angle, Number Projections and Difference Angle in the Projection tab and the Mode parameters in the Transparency tab.

Fig. 5-151 Projection window
OPERATION IN EXPERT MODE

3D View Menu

Carl Zeiss

LSM 510

LSM 510 META

(1) Projection tab

Turning Axis X/Y/Z: Selects the axis about which the data package is to be rotated.

First Angle: Rotation angle in degrees.

Number Projections: Number of projections for a sequence (variable from 0 to 100).

Difference Angle: Angle increment of a sequence.

The number keys permit the direct selection of preset values for Number Images and Difference Angle. If the Panorama button is pressed, a panorama sequence of the image series is computed.

(2) Transparency tab

Mode Maximum: The color is defined by the z position of the brightness value.

Mode Transparent: The transparent projection is built up from the rear to the front. The color is defined by the z position at which the original was last higher than or equal to Threshold.

Mode Keep Maximum: Activating this option modifies the specification governing calculation of the projection.

Threshold: Pixel value at which the ramp rises (variable from 0 to 100 %).

Ramp: Slope of the ramp (variable from 0 to 100 %; 0 % corresponds to a vertical rise).

Maximum Opacity: Degree of visibility at the top corner of the ramp (variable from 0 to 100 %; 0 % corresponds to the bottom edge in the diagram).

Brightness: The image can be brightened again by modifying the value (from 0.2 to 5).
5.7.2.4 Preview panel

The **Preview** function permits you to regard the influence of parameter changes in an **Image Display** window.

The **Slice** slider enables you to select the slice which shall be displayed in the **Preview Image Display** window.

- After finding the optimum adjustment using the **Preview** function, you have to generate the final version of the image using the **Apply** button.
 - The projection appears. The computation can be followed in the image or by the progress bar.

![Fig. 5-154 Preview panel](image)

The computed 3D sequence can be animated with the **Anim** button in the **Select** toolbar.

In addition, the **Animate** window appears, in which you can influence the direction and speed of 3D image rotation (see section 5.13.8, page 5-259).

![Fig. 5-155 Projection image](image)

You can browse through the rotation sequence manually with the **Slice** button in the **Select** toolbar and the **Slice** slider.
To view the computed 3D sequence as a gallery on the screen, click on the **Gallery** button in the **Display** toolbar.

Fig. 5-156 Projection image (Gallery)
5.7.3 Stereo

Stereoscopic images can be generated in a variety of ways by means of the Stereo function. A stack of images must be available.

5.7.3.1 Open / Close the Stereo Images window

- Click on the Stereo button in the 3D View subordinate toolbar of the Main menu.
 - This opens the Stereo Images window.
- Click on the Close button to quit the window.

5.7.3.2 Source panel

- Select the image for the projection operation from the image selection box.
- Select the channel to be used from the Channel selection box.

5.7.3.3 Stereo Images panel

- In the Stereo Images panel, set the parameters needed for stereoscopic viewing: Mode, Basic Angle, Right Left Angle, Number Images and Difference Angle in the Projection tab and the Mode parameters in the Transparency tab.
(1) **Projection tab**

- **Mode**
 - **Red / Green Image**: This displays a stereo image for red / green anaglyph observation using red / green spectacles.
 - **Split Images**: This displays a pair of stereo images for observation through a stereoscope. Colored stereo images are also possible.

- **Basic Angle**: Direction angle at which the specimen is viewed; 0° from the front, 180° from the rear.
- **Right Left Angle**: Angle between right and left (red and green) image.
- **Number Images**: Number of 3D images (slices).
- **Difference Angle**: Angle increment of a sequence.

The number keys permit the direct selection of preset values for **Number Images** and **Difference Angle**. If the **Panorama** button is pressed, a panorama sequence of the image series is computed.
(2) Transparency tab

Mode Maximum: The color is defined by the z position of the brightness value.

Mode Transparent: The transparent projection is built up from the rear to the front. The color is defined by the z position at which the original was last higher than or equal to Threshold.

Mode Keep Maximum: Activating this option modifies the specification governing calculation of the projection.

Threshold: Pixel value at which the ramp rises (variable from 0 to 100 %).

Ramp: Slope of the ramp (variable from 0 to 100 %; 0 % corresponds to a vertical rise).

Maximum Opacity: Degree of visibility at the top corner of the ramp (variable from 0 to 100 %; 0 corresponds to the bottom edge in the diagram).

Brightness: The image can be brightened again by modifying the value (from 0.2 to 5).

5.7.3.4 Preview panel

The Preview function permits you to regard the influence of parameter changes in an Image Display window.

The Slice slider enables you to select the slice which shall be displayed in the Preview Image Display window.
To start computation of the stereoscopic image, click on the Apply button.

- The image is built up twice (once each for the red and green colors), resulting in a stereoscopic image.

The stereoscopic effect can only be seen with the aid of red / green 3D goggles. The red lens is to be used for the right eye and the green lens for the left eye.

The presentation can be modified by selecting the Split Images (Mode) option in the Projection tab of the Stereo Images panel.

- By clicking on the Apply button, the two stereo pairs are presented side by side and can be viewed without red / green 3D goggles.
5.8 Macro Menu

The macro function permits the recording, running and editing of command sequences and their allocation to buttons in the Macro menu.

- In the Main menu toolbar, click on Macro.
 - This opens another, subordinate toolbar in the Main menu.

5.8.1 Macro Language

"Visual Basic for Applications", called VBA in the following, is used as the Macro language. This language is well known through its widespread use as Macro language in the "Microsoft Word for Windows" and "Microsoft Excel for Windows" products. Experience with "Microsoft Visual Basic" would also be beneficial for macro-programming of the LSM 510.

An Integrated Development Environment, called IDE in the following, is available for the editing and debugging of macros. IDE includes an "online help program" where the VBA language is described in detail.

Macros are stored in project files. One project file can include several macros.
5.8.2 Macro Control

5.8.2.1 Open / Close the Macro Control window

- Click on the Macro button in the Macro subordinate toolbar of the Main menu.
 - This opens the Macro Control window.
- Click on the Close button to quit the window.

5.8.2.2 Edit Macro function

This function allows you to manage project data. Macros can be recorded, stored, performed, edited and, if required, deleted.

- Press the Edit Macro button to switch to the Macro and Recording panels.
- Click on the Close button to quit the window.

(1) Macro panel

New button: Creates a new project.
Load button: Opens an existing project.
Save button: Stores the project on the hard disk.
Save As button: Stores an existing project under a new name.
Unload button: Removes the selected macro from the Macros list.

Edit button: Allows macros to be edited and debugged. The editor (Microsoft Visual Basic) is automatically located at the beginning of the relevant macro.

Run button: Runs a macro.
Step button: Opens the editor for line-by-line editing / debugging.
Delete button: Deletes the selected macro.
Editor button: Opens the editor. Displays the processed area of the macro edited last.
Macros are stored and managed in project files (*.lvb). Before you can record or edit a macro, you have to create a project as follows:

- Press the **New** button to create a project file.
 - A new project is created and displayed in the **Project** selection box (e.g.: **LSM 150503**). The project name is automatically default, but can be edited afterwards.

To activate an existing project, proceed as follows:

- Press the **Load** button.
 - The **Open** window will be opened.
- Select the relevant project file (data extension: *.lvb) from the **Macros** list box. Click on the **Open** button.
 - The project file will be opened and the macros contained in it are displayed in the **Macros** selection box of the **Macro Control** window.

Recorded macros are stored in main memory first. Before the macros can be assigned to the buttons in the **Macro** submenu, the project must be stored on the hard disk.

- Press the **Save** button under the project name in the **Macro Control** window and determine the file name in the **Project** selection box, if required.

(2) **Recording panel**

Before recording a command sequence, you can enter the name for the macro to be created in the **Rec Name** input box of the **Recording** panel.

- **Start** button: Starts recording.
- **Cancel** button: Cancels the recording procedure.
- **Stop** button: Stops recording.
- **Edit On Stop**: On stopping the recording procedure, the macro editor is automatically opened at the relevant position.
Proceed as follows to record a macro:

- Enter a name for the macro to be created under **Rec Name** in the **Recording** panel.
- Click on the **Start** button to start recording the macro.
- Then perform the operations to be stored, e.g.:
 - Click on the **Find** button in the **Scan Control** window. A Find scan will be performed.
 - Click on the **New** button in the **Scan Control** window. A new **Image Display** window will be opened.
 - Click on the **Single** button in the **Scan Control** window. A **Single** scan will be performed.
- Then click on the **Stop** button to end the recording. (**Cancel** enables you to cancel recording)
 - If recording was successful, the entered **Rec Name** will then also be available in the **Macros** list box of the **Macro** panel. The new macro is automatically assigned to the current project. It is possible to assign as many macros as required to a project.
- Click on the **Save** button to store the new macro.

Proceed as follows to perform a macro:

- Select the required macro from the **Macros** list box of the **Recording** panel.
- Click on the **Run** button to start performing the macro.

![Tip]

Provided that a macro is linked to a button in the **Macro** subordinate toolbar, you only need to click on this button to perform the macro.

Proceed as follows to delete a macro:

- Select the required macro from the **Macros** list box of the **Recording** panel.
- Click on the **Delete** button. The macro will be removed from the list.

Proceed as follows to edit a macro:

- Select the required macro from the **Macros** list box of the **Recording** panel.
- Click on the **Edit** button. The Microsoft Visual Basic editing window will be opened.
- Make the required changes (also see the notes on page 5-194).
5.8.2.3 Assign Macro to Button function

This function permits stored macros to be linked with one button each in the Macro subordinate toolbar:

- Press the Assign Macro to Button button to switch to the Define Buttons panel.

Define Buttons panel

Proceed as follows to link a macro to a button of the Macro subordinate toolbar:

- Select the button number from the Button selection box.
- Enter the button labelling in the Text editing box.
- Select the name of the project file from the Project box using the ... button.
- Select the macro name from the Macros box.
- Press the Apply button to assign the relevant macro to the specified button in the Macro toolbar.

Proceed as follows to delete the linking between a button in the Macro subordinate toolbar and a macro:

- Select the button number from the Button selection box.
- Press the Delete button to delete the linking.
5.8.2.4 Editing and debugging of macros

The **Edit** button activates IDE (Integrated Development Environment) which allows macros to be edited and debugged. Under the **Help - Contents and Index** menu item, IDE contains detailed "online" help on its operation and on the VBA macro language. Therefore, only a few hints are provided in the following:

You should activate the required toolbars. We would recommend you to activate the **Debug** toolbar via the **View - Toolbars - Debug** menu item.

The following buttons in the toolbar can help you when debugging macros:

- **Starts running the command lines.**
- **Stops running the command lines.**
- **Interrupts processing of the command lines (pause).**
- **Sets a breakpoint in the line with the text cursor.**
- **Processes a command line and steps into subprocedures.**
- **Processes a command line and steps over subprocedures.**
- **Exits the subprocedure (step out).**
- **Displays the value of the marked expression (Watch). If nothing is marked, the value of the variable above the text cursor is displayed.**
- **Activates the Watch window in which values of variables and expressions can be displayed.** For this, text is marked in the code window and dragged into the **Watch** window. Variables can be modified in the **Watch** window.

In the left-hand edge of the code window you will find an arrow beside the current command line. A new current command line can be determined by moving the arrow via the mouse. This makes it possible to skip command lines or to process command lines several times.
5.8.3 Overview of available Macros (all LSM releases)

Documentation files (*.rtf, *.doc) of advanced macros will be located in the macro directory.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOTFfit.lvb</td>
<td>Linearize laser attenuation (AOTF or mechanical)</td>
</tr>
<tr>
<td>AOTFfitlin.lvb</td>
<td>New method to linearize laser attenuation (AOTF or mechanical)</td>
</tr>
<tr>
<td>Autofocus.lvb</td>
<td>Automatic focusing according to a set configuration</td>
</tr>
<tr>
<td>Bleach.lvb</td>
<td>Bleaching of a rectangular area or a line; combines old macros BleachRectangle.lvb, BleachLine.lvb and Spot.lvb</td>
</tr>
<tr>
<td>CameraColor.lvb (also Button in Maintain)</td>
<td>Color balance of Axiocam HRc</td>
</tr>
<tr>
<td>Centerv28-30.lvb</td>
<td>Centers the field of view around the position marked with the cross tool;</td>
</tr>
<tr>
<td>CopyPasteOverlays28-30.lvb</td>
<td>Copies actual overlay drawing into the clipboard and pastes the drawing into a selected image window</td>
</tr>
<tr>
<td>CopyPasteRoi.lvb</td>
<td>Copies drawing element of overlay into clipboard and pastes it into other selected windows</td>
</tr>
<tr>
<td>CopyRoisToOverlay28-30.lvb</td>
<td>Copies ROIs to overlay drawings; both can be viewed and measured at the same time;</td>
</tr>
<tr>
<td>CpCanTrace.lvb</td>
<td>Checks communication of PC with CAN-Bus/net</td>
</tr>
<tr>
<td>CpDsp.lvb</td>
<td>Checks communication of PC with DSP</td>
</tr>
<tr>
<td>DeleteMultiTimeRecipies.lvb</td>
<td>Deletes all available Multiple Time Series set ups</td>
</tr>
<tr>
<td>Distance.lvb</td>
<td>Example macro for measurement</td>
</tr>
<tr>
<td>Distance28-30.lvb</td>
<td>Release 3.0: measures the distance using the mouse;</td>
</tr>
<tr>
<td>DivideThroughReferencedImage.lvb</td>
<td>- divide complete time series through a single image/part of the series</td>
</tr>
<tr>
<td>EventPollPeriod.lvb</td>
<td>Not documented</td>
</tr>
<tr>
<td>FastModeSwitch.lvb</td>
<td>Store settings from "Scan-Control" and reuse.</td>
</tr>
<tr>
<td>FileExport.lvb</td>
<td>Exports one or more selected images according to the set file format in one go; Exports image intensity values in ASCI format;</td>
</tr>
<tr>
<td>GDC_calib.txt</td>
<td>Description</td>
</tr>
<tr>
<td>HotKey.lvb</td>
<td>Shift focus with a button and start Single-Scan</td>
</tr>
<tr>
<td>KSPlastv25.lvb</td>
<td>KS software macro</td>
</tr>
<tr>
<td>Name</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Kundenmacro32.doc</td>
<td>Documentation</td>
</tr>
<tr>
<td>Lambdatrans.lvfb</td>
<td>Time series alternating between lambda and transmission mode</td>
</tr>
<tr>
<td>LsmHWAdmin.lvfb (also Button in Maintain)</td>
<td>Direct service hardware access (password protected)</td>
</tr>
<tr>
<td>LsmHWAdminEx.lvfb</td>
<td>Calibration service macro (password protected)</td>
</tr>
<tr>
<td>LsmHWAdminMeta.lvfb</td>
<td>Calibration for META channel</td>
</tr>
<tr>
<td>LsmTime.lvfb</td>
<td>Triggered Time scan Macro</td>
</tr>
<tr>
<td>Macro_Description.pdf</td>
<td>Description</td>
</tr>
<tr>
<td>MCS30.lvfb</td>
<td>Control of spectrometer</td>
</tr>
<tr>
<td>MetaExport.lvfb</td>
<td>Export of META image files including all channels as tif, bmp...</td>
</tr>
<tr>
<td>ModifySeries30.lvfb</td>
<td>Modifies Z Stacks and Time Stacks like Rotation of the stacks, being mirrored, Conversion of time stacks into z-stacks and vice versa;</td>
</tr>
<tr>
<td>ModifySeries30.rtf</td>
<td></td>
</tr>
<tr>
<td>MultiProfile.lvfb</td>
<td>StitchArt macro (Software option)</td>
</tr>
<tr>
<td>MultiStack.lvfb</td>
<td>Similar to StitchArt, but generates stacks only (no profiles) and uses the settings in scan control.</td>
</tr>
<tr>
<td>MultiTime28-32.lvfb</td>
<td>Set up of time series experiments including repeated imaging, bleaching and autofocusing with defined configurations at multiple locations and for various views at each location (Software option)</td>
</tr>
<tr>
<td>MultiTime28-32.rtf</td>
<td></td>
</tr>
<tr>
<td>OptimizeGDCV3_0.lvfb</td>
<td>Optimize the max. peak power of fiber coupled Ti:Sa lasers (Release 3.0/3.2)</td>
</tr>
<tr>
<td>OptimizeGDCV3_2.lvfb</td>
<td></td>
</tr>
<tr>
<td>Parameters.lvfb</td>
<td>Check the scan parameters</td>
</tr>
<tr>
<td>Pixel28-30.lvfb</td>
<td>Displays and stores the mean intensity values of each line of one or more channels of one or more images; data from each line are stored as a txt file in the current folder;</td>
</tr>
<tr>
<td>Profile.lvfb</td>
<td>Displays the pixel values along a line</td>
</tr>
<tr>
<td>Profilev28-30.lvfb</td>
<td>Opens VBA editor for profile</td>
</tr>
<tr>
<td>Reboot.lvfb (also Button in Maintain)</td>
<td>Service reset of scan-module (password protected)</td>
</tr>
<tr>
<td>Scalebar30.lvfb</td>
<td>Indication of self defined intensity levels assigned to a ROI as scale bar in the image; also attaches tick marks and concentration values to the grayscale/color wedge.</td>
</tr>
<tr>
<td>Scalebar30.rtf</td>
<td></td>
</tr>
<tr>
<td>SetFind.lvfb (also Button in Maintain)</td>
<td>Sets properties of the Find function</td>
</tr>
<tr>
<td>Spline.lvfb (also Button in Maintain)</td>
<td>Calibration of a spline-scan</td>
</tr>
</tbody>
</table>
Name Description

- **TileScanRotation.lv**_b Defines rotation of a tile-scan
- **TimeSeriesShutter.lv**_b Close laser shutter in time series on a LSM 5 PASCAL
- **Trigger.lv**_b Trigger test
- **TuneNLOLaser32.lv**_b Change wavelength of a tunable Ti:Sa laser and run excitation series

Remarks:
- During installation, default macros will be installed according to their type either in AIM, AIM\HWT or AIM\Macros. Self generated Macros will be in AIM\Macros.
- In case of a new installation, old macros will be stored in AIM\Macros\BackupMacros or AIM\Backup, to avoid problems with identical names of existing and new macros.
5.8.4 Sample Macros

The LSM 5 software package includes e. g. the Distance, Profile, Spot, Axioplan Center, MCS and Multiple Time Series sample macros.

They can be easily executed by clicking on the relevant button in the Macros subordinate toolbar.

During the execution of a macro, the Stop Macros window is always displayed on the screen. This enables a macro to be stopped any time by pressing the Stop button.

The functions of the sample macros are explained below.

5.8.4.1 Distance macro

This macro permits measurement of the distance of a line created in the scan image.

- Click on the Distance button in the Macro subordinate toolbar.
 - An XY scanning image of the specimen is recorded and displayed. At the same time, the Mouse position test window appears on the screen.
 - Then draw a line over the distance to be measured by clicking and holding down the mouse button. The click of the mouse sets the starting point, releasing the mouse sets the end point of the line.
 - After release of the mouse button, the length of the line in the scanning image is displayed (in µm).
 - Any required number of lines can be defined in the image. The previous line is deleted.
 - A click on the Exit button in the Mouse position test window will end the macro.

5.8.4.2 Profile macro

This macro permits the gray values of a line created in the scanning image to be determined pixel by pixel.

- Click on the Profile button in the Macro subordinate toolbar.
 - An XY scanning image of the specimen is recorded and displayed. The Profile window is shown on the screen.
 - Then click and hold down the mouse button to draw a line in the scanning image for which the gray values shall be determined.
 - The current numbers of the pixels of the created line to which the relevant gray value is assigned now appear in the Profile window.
 - At the same time, the distance of the created line is displayed in µm for checking.
 - Any required number of lines can be defined in the image. The previous line is deleted.
 - A click on Cancel will end the macro.
5.8.4.3 Bleach macro

This macro permits the specimen to be excited with the laser as required along a line created in the scanning image.

- Click on the **Bleach** button in the **Macro** subordinate toolbar.
 - An XY scanning image of the specimen is recorded and displayed. The **Spot Scan** window is shown on the screen.

- Click on the **Select Excitation Line** button.

- Create a free-hand line (spline) in the scanning image over the area to be excited by clicking and holding down the mouse button.

- Then determine the duration of the excitation by moving the **Exposure Time** slider.

- Click on the **Excite** button to trigger the excitation procedure.

- A click on **Exit** will end the macro.

5.8.4.4 MCS macro

The **MCS** macro enables the acquisition of high resolution fluorescence emission spectra from single points or ROIs of an (multi-)fluorescence image via the connected MCS diode line spectrometer from Zeiss (connection via the Fiber Out LSM port).

- Click on the **MCS** button in the **Macro** subordinate toolbar.
 - The **Carl Zeiss MCS Control macro** window appears on the screen.

- Select the **LSM Mode** for the recording of scanned images or the **MCS Mode** for the recording of spectra.

The MCS mode permits selection between two options.

Use spot disable: a ROI can be drawn, and a spectrum is recorded from this ROI (Mean of ROI).

Use spot enable: crosslines can be positioned on the section scanned before. A spectrum is read from the selected point.

The pinhole diameter can be changed directly using the slider.

- Activate / deactivate the **Use Spot** check box. Set the spot or define a ROI in the image scanned before.

- Start the procedure with a click on the **Start Acquisition** button.
If you are in the FCS mode, a macro for spectrum recording will also be started on the MCS diode line spectrometer.

- Click on **Stop Acquisition** to end the recording prematurely.
- Click on **Exit** to close the macro menu.

5.8.4.5 Multiple Time Series macro, Rev. 3

The Multi Time Series program is designed to provide flexible programming of automated time dependent experiments.

- A pre-program time delay
- A pre-bleaching functionality
- An autofocus functionality
- A number of different, single time series (called a block) either at the same position of a sample or at different positions (if a motorized stage is available)
- A time series of a tile scan
- A time series of a tiled Z stack

The basic programming unit is a single Time Series Block in line, frame or Z-stack mode. In each block user can define configuration for the data acquisition (single or multi-track), the number of images and the time interval/delay between images.

User can activate an optional autofocus function before each block, pre-program time interval before each block (from the beginning of the previous block to the beginning of the current block), and/or execute bleach track with arbitrarily specified bleach ROI’s, laser line(s) and power.

The autofocus function can be executed using specified single-track configuration, or with the configuration used for imaging (using the first channel of the first track).
One can define the z-offset, the distance in the z direction from the position where the autofocus finds the reference feature in focus (position of maximum intensity - e.g. position of the cover slip reflection in the reflected light configuration) to the position, which is moved into focus plane when the image acquisition begins (e.g. into the tissue).

The image acquisition is done with the configuration specified for the given block.

Autofocus search parameters: Z-offset as well as the Z-range (the distance in the z direction over which the autofocus function searches for the plane of maximum intensity) can be set independently for different stage locations (on the systems with the motorized stage).

5.8.4.6 StitchArt macro

The StitchArt software option for LSM 510 MAT and LSM 5 PASCAL MAT permits the automated 3D measurement of large samples:
- Highly resolved topographies of 10 times larger scan field
- Extra large profiles of more than 10 times of length of scan field

Example:

![Image of a coin and a 3D scan field diagram]

- **9 x 9 stacks**
- **3.6 mm x 3.6 mm**

Single scan field size

- **Epiplan Neofluar 20x/0.5**
(1) Multiple Profile Mode

Maximum format: 16384 pixels x 2048 slices
Variable overlap: 10 ... 50 % of single profile length
Scan Speed: 8 (fixed)
Scan time: 20 ... 210 seconds (depending on Z)
Height difference DZ: 0.1 ... 0.6 µm [in steps of 0.1]
Total height Z: 50 µm ... 1 mm
Auto alignment: Cross-correlation in X, Y & Z

Maximum profile lengths:

<table>
<thead>
<tr>
<th>Objective:</th>
<th>5x</th>
<th>10x</th>
<th>20x</th>
<th>50x</th>
<th>100x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single X Profile (0.7):</td>
<td>2.6 mm</td>
<td>1.3 mm</td>
<td>650 µm</td>
<td>260 µm</td>
<td>130 µm</td>
</tr>
<tr>
<td>Multiple Profile (1.0):</td>
<td>30.0 mm</td>
<td>15.0 mm</td>
<td>7.5 mm</td>
<td>3.0 mm</td>
<td>1.5 mm</td>
</tr>
</tbody>
</table>

(2) Multiple Stack mode

Single stack format (X): 4x4 ... 512x512 pixels
Number of stacks: 1x1 ... 16x16
Variable overlap: 10 ... 50 % of single image size
Scan Speed: 5 ... 8
Scan time: 1 minute ... 10 hours
Height step DZ: 0.5 ... 100 microns
Total height Z: 4 mm
Auto alignment: Cross-correlation in X & Y

Maximum stack sizes:

<table>
<thead>
<tr>
<th>Objective:</th>
<th>5x</th>
<th>10x</th>
<th>20x</th>
<th>50x</th>
<th>100x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single XYZ Stack (0.7):</td>
<td>2.6 mm</td>
<td>1.3 mm</td>
<td>650 µm</td>
<td>260 µm</td>
<td>130 µm</td>
</tr>
<tr>
<td>Multiple Stack (1.0):</td>
<td>26.7 mm</td>
<td>13.3 mm</td>
<td>6.7 mm</td>
<td>2.6 mm</td>
<td>1.3 mm</td>
</tr>
</tbody>
</table>

Adjustment functionality:

Find Focus: Autofocus by fast Z line
Find Gain: Auto Brightness & Contrast
Adjust scan mirrors: To XY direction of MOT stage
Adjust spherical objective error: On a plane mirror

Macro VBA programming is described in chapter 6.
5.9 Options Menu

The **Options** menu permits performance of the following functions:
- User-Defined Examination Methods of the Expert Mode are made available to the Routine Mode.
- Deletion of Routine Mode examination methods.
- Display of a current list of dyes with preferred wavelengths for the scanning procedure.
- Display / modification of the user-accessible program **Settings** of the LSM 5 software.

- In the **Main** menu toolbar, click on **Options**.
 - This opens another, subordinate toolbar in the **Main** menu.

5.9.1 Export RM Function

This function permits **User-defined Examination Methods** created in the **Expert Mode** to be made available to the **Routine Mode**.

- Load a Frame, Stack or Time Series image which was scanned using optimized parameters.

 It is also possible to export the examination method of a currently displayed image which has just been scanned.

![Options menu](image1)

![Image Display window](image2)
Click on the **Options** button of the **Main** menu and then on **Export RM** (see Fig. 5-171).

- The **Export to Routine Mode** window appears.

- Enter any name for the method to be taken over.

- If required, enter a brief description and additional comments under **Description** and **Notes**.

- Click on **Ok**. (**Cancel** allows you to cancel the procedure).

- The method used for image acquisition is taken over in the Routine Mode.

The exported **User-Defined Examination Method** must be activated before it can be used in the Routine Mode (see **Routine Mode**, chapter 5).

If you want to change from the Expert Mode to the Routine Mode and vice versa, close all the windows first.

It’s not possible to export ratio channels and bleach parameters. All methods will be loaded in the Routine Mode with **Zoom 1, Rotation 0, Offset 0** and without defined ROIs.

5.9.2 Load RM Function

The **Load RM** (Routine Mode) function permits the deletion of **Standard Examination Methods** and **User-defined Examination Methods** from the database of the **Routine Mode**.

- Click on the **Options** button of the **Main** menu and then on **Load RM** (see Fig. 5-171).

 - The Routine Mode Database is opened.

The Routine Mode database is identical to the database of the Expert Mode, though not all the functions are available. The listed methods cannot be loaded as an image.

- To delete an **Examination Method** of the Routine Mode, select the method from the **Form, Gallery** or **Table** display of the **Routine Mode Database**.

- Then click on the **Delete** button.

 - The selected method is deleted from the database and is no longer available in the Routine Mode.
5.9.3 Dye DB Function

The Dye DB function is for information only and permits access to the database contained in the system, including a list of suitable dyes for fluorescence microscopy.

The database contains a comparison of tables of dyes, optimum excitation wavelengths and maxima of emission wavelengths.

- Click on the Dye DB button in the Options subordinate toolbar.
 - The Dye database will be opened and displayed on the screen.

![Dye database window](image)

- Click on the Close button to exit the Dye database.
5.9.4 Spectra DB Function

Spectrums created with the Lambda Mode can be stored in the Spectra Database.

- Click on the Spectra DB button in the Options subordinate toolbar.
 - The Spectra Database will be opened and displayed on the screen.

![Fig. 5-175 Spectra Database window](image)

- Click on the Close button to exit the Spectra Database.
5.9.5 Settings Function

The Settings function permits the individual setting and matching of software settings with regard to the following points:

- Autosave
- Database General
- Database Table Viewer
- Database Gallery Viewer
- Import / Export
- Scan Information
- Image Status Display
- Print Status Display
- Recording / Reuse
- Timeseries
- Scan Mean of ROIs
- Temporary Files
- Program Start
- Shutdown
- Image Display Toolbars
- Save

5.9.5.1 Open / Close the Settings for user : ... window

- Click on the Settings button in the Options subordinate toolbar of the Main menu.
 - This opens the Settings for user : ... window.
- Click on the OK button to quit the window. The last settings will be taken over. Cancel enables you to cancel the procedure, with any changes you made not being taken over.

![Fig. 5-176 Settings for user : ... window](image)
5.9.5.2 Autosave

This tab permits activation or deactivation of automatic data storage. Only one option can be selected at a time.

(1) No Autosave

On activation of this option, the Autosave function is switched off. Save and Save As give the same dialogues.

(2) Use LSM image database and auto increment image name

On activation of this option, newly recorded or modified images are stored by Save automatically and assigned to the name or defined in this function. The image name is automatically created using a base name and a serial number. For this, a base name must be entered in the Base image name input box, and a starting value for the serial number in the Counter value input box. The Database selection box permits selection of the directory in which the data will be stored.

(3) Export to Attofluor format

On activation of this option, newly recorded or modified images are stored by Save in the Attofluor format. The displayed Experimental directory selection box permits selection of the directory in which the data will be stored.

(4) Export to Metafluor format

On activation of this option, newly recorded or modified images are stored by Save in a subdirectory in the MetaFluor format. An existing higher layer of folders must be selected for the subdirectory from the Base directory selection box. Furthermore, a name for the subdirectory must be entered in the Subdirectory base name input box. The starting value for the images then created, to which a continuous number is automatically assigned, is set in the Subdirectory counter input box.
5.9.5.3 Database General

This tab permits the basic starting settings for the use of databases.

(1) Start with "Form"
On opening of a database, the Form option is displayed first.

(2) Start with "List"
On opening of a database, the List option is displayed first.

(3) Start with "Gallery"
On opening of a database, the Gallery option is displayed first.

(4) Show first recordset at opening of database
On opening of a database, the first recordset is displayed.

(5) Show first recordset at opening of database
On opening of a database, the middle recordset is displayed.

(6) Show first recordset at opening of database
On opening of a database, the last recordset is displayed.

(7) Use separate path for "Create" and "Open"
This option permits the path to be changed when the Open or New database function is used.

(a) Save most recently used path at exit and reuse at next program start
On activation of this option, the path setting last used is automatically selected again in the Open Database or Create New Database window.
(b) Use the following path at program start

On activation of this option, the path for the Open Database or Create New Database window can be entered directly in the relevant selection box, or selected by clicking on the ... button in the Choose Directory window. This path will then always be set when a database is opened or created.

Clicking on the User default path button firmly sets the C:\users\default\ path.

5.9.5.4 Database Table Viewer

The Database Table Viewer tab permits the definition of the columns for the table display of a database. This only requires the relevant check box to be activated with a click of the mouse.

On activation of the Automatic column width calculation option, the column width is calculated automatically.

On activation of Save and use interactive column width setting, the column width in the database can be matched as required. The individual setting will be retained when the database is closed.

5.9.5.5 Database Gallery Viewer

The Database Gallery Viewer tab permits the image information to be displayed in the Gallery mode of the database to be activated by clicking on the relevant check box.
5.9.5.6 Import / Export

(1) Use separate path for "Import" or "Export"

This option permits the change of the path setting for use of the Import or Export function (File menu).

(a) Save most recently used path at exit and reuse at next program start

On activation of this option, the path used last is automatically selected again in the Import Images or Export Images and Data window.

(b) Use the following path at program start

On activation of this option, the path for the Import Images or Export Images and Data window can be entered directly in the relevant selection box, or selected by clicking on the ... button in the Choose Directory window. This path will then always be set when the Import / Export function is used.

Clicking on the User default path button firmly sets the C:\users\default\ path.

5.9.5.7 Scan Information

This tab permits the setting of which scan information shall be displayed in the Scan Information window (see Window pulldown menu of the Main menu, page 5-236f).

Activation / deactivation of the information to be displayed is performed with a click of the mouse.
5.9.5.8 Image Status Display

This tab permits selection of which image information is displayed on opening of an image or on activation of the Info button of the Image Display window. Furthermore, you can determine which information will be displayed in the Image status bar.

On activation of the Show status display upon opening of a new image display check box, the image information is automatically displayed immediately after opening of the Image Display window (Info button is activated).

5.9.5.9 Print Status Display

This tab permits selection of which information is displayed in print preview.

On activation of the Print Status Information check box, the status information will be printed.

5.9.5.10 Recording / Reuse

The parameters to be taken into consideration for the use or load of a recording configuration are set in this tab.

As an option, you can also determine whether the objective setting shall be taken over when the Reuse function is used.
5.9.5.11 Time series

In the Timeseries tab, you can determine whether the time for the recording of a time series is set as Time Delay or as Time Interval.

Time Delay is the interval between the end of one scan process and the beginning of the next.

Time Interval is the interval between the beginning of one scan process and the beginning of the next.

You can select the unit for Mean of ROIs diagrams.

5.9.5.12 Scan Mean of ROIs

The Mean of ROIs tab permits the presetting of the Image Display window for the optional MeanROI function (time series) to be changed with regard to scaling and display mode of the intensity time diagrams.

(1) Diagram Scaling

The following settings are possible by activating one of the option buttons:

- Automatic diagram scaling
- Fixed time range for diagram time scale; input of the time range in seconds via input box
- Fixed number of cycles for diagram time scale; input of the time range in number of cycles via input box

(2) Initial diagram types

The following settings are possible by activating the relevant option button:

- One diagram
- Channels diagram
- ROIs diagram

On activation of the Black graphs check box, the intensity profiles in the diagram are displayed in black (monochrome).
(3) Live image
If you activate the Also display the live image check box, the live image will be additionally displayed in the Image Display window of the Mean of ROI function during the Mean of ROI scan.

On activation of the Also display the live image check box, two further options become available in the Scan Mean of ROIs tab:
- Scan the whole image check box
- Save the whole time series check box

(a) Scan the whole image
If you activate this check box, the complete live image will be scanned; only the defined ROIs will be scanned if the check box is deactivated.

(b) Save the whole time series
If you activate this check box, the complete Time Series will be scanned; only the Mean of ROI series will be scanned if the check box is deactivated.

5.9.5.13 Temporary Files
The Temporary Files tab permits determination of the directory in which temporary files are stored.

(1) Use "TEMP" environment variable
Temporary files are stored in the TEMP standard directory of the computer’s hard disk.

(2) Use the following path
The directory for temporary files can be selected by clicking on the ... button in the Choose Directory window.
5.9.5.14 Program Start

The Program Start tab permits selection of a track configuration via the Startup configuration selection box, which will be loaded automatically when the Expert Mode is started.

On activation of the Don't show logo check box, the initial screen with the Zeiss logo will not be displayed after the start of the LSM 5 software.

5.9.5.15 Shutdown

The Shutdown tab allows you to determine, by activation of the Lasers off on Exit check box, that the lasers are automatically switched off when the LSM 5 software is exited.

Allow lasers to cool for five minutes before switching of the system.

5.9.5.16 Image Display Toolbars

The Image Display Toolbars tab enables you to determine the window toolbars which shall be automatically displayed when an Image Display window is opened.

Furthermore, the color mode (color / mono), to which the image display will switch when the Color Palette function is opened / closed, can be determined.

(1) Display Windows Toolbars

On activation of the relevant check box, the following window toolbars are automatically displayed when an Image Display window is opened: Channels, Zoom, Slice, Overlay.
(2) **Color Palette**

(a) **Switch to "mono" on activation of a palette**

If this check box is activated, the **Mono(chrome)** image display mode is switched automatically when a palette is selected in the **Color Palette** window.

(b) **Switch to "color" on deactivation of a palette**

If this check box is activated, the **Color** image display mode is switched automatically when a palette is deactivated in the **Color Palette** window.

5.9.5.17 **Save**

The **Save** tab permits the presetting for the storage of scanned or processed images to be changed.

Activation of one of the three option buttons enables you to determine the database directories to which stored images are assigned:

- Image files to subdirectory of the database
- Database and image files to the same directory
- At "Create Database" automatically create a subdirectory with the same name as the specified database and create the database and image files in that subdirectory

If the **Save prompt at closing modified windows** check box is activated, you are automatically asked on closing a changed **Image Display** window whether the image shall be stored.

If the **Warning before overwrite existing recordsets** check box is activated, this question is asked automatically on storing an image under a new name if an image file with this name already exists in the database.

If the **Remember "Name", "Description" and "Notes" in the save dialog** check box is activated, the **Name**, **Description** and **Notes** text boxes of the **Save Image and Parameter As** window show the text for the image last saved. You can edit the text boxes as required for the new image to be saved.

If the **Remember "Name", "Description" and "Notes" in the save dialog** check box is deactivated, the three text boxes are blank when the **Save Image and Parameter As** window is opened.
5.10 Maintain Menu

The Maintain menu contains additional modules to check and guarantee the interference-free operation of all the software and hardware components of the LSM 510.

- In the Main menu toolbar, click on Maintain. This opens another subordinate toolbar in the Main menu.

5.10.1 Scanner

The Scanner function is used for scanner calibration.

5.10.1.1 Calibration with Speed 1-10 (electr., unidirectional / bidirectional) and Speed 11-13 (electr., only unidirectional)

(1) Preliminary notes

The electrical calibration has to be performed every 2-3 months. For electrical calibration no laser scanning is performed and for that reason no calibration sample is needed.

(2) Calibration conditions

Before the calibration process can be started, the system has to be in operation for at least one hour.
(3) **Calibration procedure**

- Click on the **Scanner** button in the **Maintain** subordinate toolbar of the **Main** menu.
 - This opens the **Scanner Calibration** window.
- Click on the **Speed 1-10 (electr.)** or **Speed 11-13 (electr.)** button respectively.
- For electrical calibration of speeds 11-13 the appropriate zoom factors have to be applied (11 : zoom ≥ 2.5, 12 : zoom ≥ 3.6, 13 : zoom ≥ 5.6).
- Activate the **Display Graphics** check box enables to check the progress of the calibration process on the **Progress Status** bar.
 - During successful calibration process, the status button is of green color, in case of an error it switches to red. The progress of the calibration process is indicated by the **Progress Status** bar. The calibration process is completed, when the indicator button is grayed.
- Click on the **Calibrate** button to start the automatic scanner calibration.
- Confirm warning information with **OK**.
- Click on the **Close** button to close the **Scanner calibration** window.

The **More** function is for servicing purposes only and can only be performed by authorized personnel. Its access is therefore password-protected.
5.10.1.2 Calibration with Speed 11-13 (optical, bidirectional)

(1) Preliminary notes
The optical calibration of scan speeds 11-13 (bidirectional) can only be performed at systems with complete hardware level of Release 2.8.
The optical calibration procedure has to be repeated every two weeks in normal use and after long delay times of the system.
The minimum duration of the calibration process is 10 minutes. However, it can last up to a maximum time of 40 minutes depending on the performance of the scanner in use and the actual tuning conditions.
If the optical calibration is successfully finished, there is no need to start the electrical calibration for unidirectional scanning of speed 11-13 (in opposite, the electrical calibration would overwrite the much more accurate values of the optical calibration procedure).
With speed 11, 12 and 13, scanning is performed at scanner frequencies of 868, 1042 and 1306 Hz, respectively.
In bidirectional scanning, the total line frequencies are 1736, 2084 and 2612 Hz, the image recording times for 512 lines are 0.29, 0.25 and 0.20 seconds.

(2) Calibration conditions
• The microscope stand has to be placed totally vibration-free.
 − Note, that even power units on the granite plate or inappropriate situated cables can cause vibrations.
• Before the calibration process is started, the system has to be in operation for at least one hour (better: two hours).
 − Otherwise, the tuning results will be incorrect and the forward / backward image contents do not match with each other.
• The longest available laser wavelength of the system has to be applied.
• A 80/20 neutral beamsplitter and a None position in the emission filter wheel of either Channel 1 or 2 has to be used in the Scan Configuration window.
• A Plan-Neofluar 10x/0.3 or Epiplan Neofluar 10x/0.3 objective lens has to be used.
• A special sample (see Fig. 5-195) with two identical but 90 degrees rotated gratings (one for each scan direction) has to be used as a calibration standard.
• The pinhole has to be completely opened.
• A dynamic range of 8 bit has to be used.

(3) Calibration procedure
• It is advantageous to perform the electrical calibration before starting the optical calibration process.
 For a first scan of the calibration standard start with scan speed 12 and zoom 3.6 (unidirectional).
• Focus on the calibration standard and adapt the dynamic range of the detector on the sample.
 − Optimize Detector Gain and Ampl. Offset values in the Channels sheet of the Scan Control window by means of the Range Indicator mode.
• The calibration standard has to be positioned as indicated in Fig. 5-196.

• Before starting the calibration procedure, change to the bidirectional scan mode in the Scan Control window.

• Scan Corr. X and Scan Corr. Y in the Mode sheet of the Scan Control window has to be set to zero.

• Click on the Scanner button in the Maintain subordinate toolbar of the Main menu.
 - This opens the Scanner Calibration window.

• Click on the Speed 11-13 (optical) button.

• Activate the Display Graphics check box enables the graphical display of the calibration process.

• Click on the More (Less) button to display the Speed Selection menu.
• With activated **Auto Calibration** box, all speeds (index) and axis are calibrated one after another automatically.
 - Goal of the calibration procedure is the achievement of a minimum of the **forward-backward-difference** (blue line in the graphical display) and the best possible **linearity** (black line in graphical display monitors the linearity deviation). Both lines (blue and black) should be as straight as possible and as close as possible to the **Zero level** (red line in graphical display). Green line represents the driver voltage.

• Click on the **Calibrate** button to start the scanner calibration procedure.

• Confirm warning information with **OK**.
 - The procedure starts with Speed 11 and the X-scanner. When the Auto calibration for Speed 11 is finished successfully the procedure continues with Speed 12 (higher acoustic frequency) and larger zoom.

• If necessary slightly reposition the sample and click on the **Next** button.

• Do not focus or change scan parameters during calibration procedure!

• After calibration of X-axis the orientation of the calibration grid in the calibration window changes from horizontal to vertical orientation. The second grid of the calibration sample has to be selected and again positioned as indicated in Fig. 5-196.

• Click on the **Next** button and continue with Y-scanner calibration.

• If the calibration for all speeds and scanners has finished successfully, quit the scanner calibration window by pressing the **Close** button.

• If the Auto Calibration procedure can not be performed successfully after several tries, calibrate the scanner manually.
• If the **Auto Calibration** box is disabled, the speed index and the scanner (**X-axis** or **Y-axis**) has to be chosen manually. The calibration cycle only contains one speed index and one scanner. For calibration of all speeds (11-13) and both scanners, the manual calibration procedure has to be repeated several times with changing axis and index parameters (Start with scanner X and speed 11, continue with scanner X and speed 12, then X and speed 13, ...). The position of the calibration standard has to be controlled at each new speed index. A repositioning of the calibration sample is required after scanner change (for X-scanner calibration horizontal grid, for Y-scanner vertical grid).

(4) **Important notes and hints**

The tuning procedure runs automatically to a large extent without any problems. However, several errors can occur. That’s why it is strongly recommended to observe the complete calibration process. If a status error message occurs or the calibration procedure is not finished properly, this can have the following reasons:

No optimal positioning of the calibration standard.

Indication: One end of blue and black line jumps a bit forward and backward because software recognizes sometimes the outer line of the grating and sometimes not.

- Stop the calibration procedure.
- Check the focus of the calibration sample.
- Check if the yellow horizontal line crosses the scale pattern of the calibration standard properly.
- (If necessary) Shift the calibration standard by half a scale unit (No scale tick but a gap has to be situated directly on the edge of the image).
- Restart the calibration procedure.

No optimal setting of Detector gain and Amplifier Offset.

Indication: The forward-backward-difference shows a lot of peaks and changes significantly from image to image.

- Stop the calibration procedure.
- Calibrate speed 12 (unidirectional) electrically.
- Optimize gain & offset: Ticks of the grid have to have intensity values of 250 ... 255 (just before red color in **Range Indicator** palette). Minimum intensity values have to be between 1 ... 5 (no blue parts occur in the image by applying **Range Indicator** palette).
- Restart the optical calibration procedure.

Sliders of Scan Corr. X and Scan Corr. Y in the Mode sheet of the Scan Control window were not set to zero.

Indication: Calibration process does not converge.

- Stop the calibration procedure.
- Set both values to zero.
- Restart the calibration procedure.
Non-regularities of the scanner feedback.

Indication: The ticks on the outer sides of the grid vary about more than 1 tick width between consecutive images (in the middle of the calibration process, the linearity is optimized and the problem starts to occur).

- Stop the calibration procedure.
- Call the LSM service hotline.

If optical calibration comes not to a successful end, please contact your service hotline.

Scanner calibration in LSM 5 Software, Release 3.0

In LSM 5 Software, Release 3.0, the **do full calibration** (**Measure spectral response**) checkbox must be set at the first calibration procedure **Speed 11-13 (optical)**.
5.10.2 Objective

This function permits changed objectives to be activated and the parfocality to be set without having to exit the software.

5.10.2.1 Objective change

- Change the required objective in the nosepiece.
- Click on the Objective button in the Maintain subordinate toolbar of the Main menu.
 - The Objective Control window appears on the screen. The Objective button is activated in accordance with the presetting, and the Objective panel is displayed in the Objective Control window.
- Click on the graphical button of the relevant nosepiece mount (Position).
 - The Change Objective window appears.

All available objectives are listed in the Potential Objectives directory of the Change Objective window.

- Select the new objective by double clicking from the list in the Potential Objectives directory.
- Click on Close to exit the Change Objective window.

(1) Add Objective

This function permits new objectives to be added to the database.

For this, proceed as follows:

- Click on the Add Objective button on the Change Objective window.
 - The Create new Objective window is opened.
• Enter the data of the new objective in the Create new Objective window, then click on the Apply button.

The new objective is stored in the database and included in the Change Objectives window. You can now activate the new objective as a favorite objective using the procedure described above.

If you have activated the Non Zeiss check box, objectives from other manufacturers can also be included in the database.

(2) Remove Objective
You can only remove objectives in the Favorite Objectives and the User Defined Objectives directories.

• To remove an objective from the database, select it with a click of the mouse in the Change Objective panel and then click on Remove Objective. The new objective appears in the User Defined Objectives directory.

• Click on Close to close the Create new Objective window.

5.10.2.2 Focus speed change

• Change the required objective in the nosepiece.

• Click on the Objective button in the Maintain subordinate toolbar of the main menu.
 - The Objective Control window appears on the screen. The Focus Speed has to be activated in the Objective Control window.
 - The focusing speed of the relevant objective can be selected by using either the slider or the input box in 40 steps.
5.10.2.3 Parfocality Correction

The parfocal setting is performed via screen dialogs in successive panels.

- Click on the **Parfocal Correction** button.
 - The **Parfocal Adjustment** panel appears.
- Start the setting with the objective of the highest magnification factor (reference objective). Proceed in accordance with the displayed instructions.
- Click on **Start**.
 - The next dialog is displayed in the **Parfocal Adjustment** panel.
- Focus on your slide object.
- Click on the **Next step** button.
- Perform these steps for each objective.
- Click on the **Close** button to exit the **Objective Control** window and accept the settings.

Fig. 5-204 Objective Control window

Fig. 5-205 Objective Control window
5.10.3 Pinhole Adjustment

In the Pinhole and Collimator window, the pinholes and collimators are optimally aligned and adjusted to the used beam path (configuration).

The position of the pinhole (X-Y-Z-coordinates) in relation to the detector makes a major contribution to image optimization.

In all existing standard configurations, the pinholes have already been adjusted at the factory. These settings are taken over for active operation when a standard configuration is loaded.

If you want to create a setting that differs from the standard configurations, adjust the pinhole as follows.

5.10.3.1 Open / Close the Pinhole & Collimator Control window

- Click on the Pinhole button in the Maintain subordinate toolbar of the Main menu.
 - This opens the Pinhole & Collimator Control window.
- Click on the Close button to quit the window.
5.10.3.2 Function description

(1) Pinhole panel

No further software function can be activated and executed during pinhole adjustment.

Pinhole / Description field: Selection of pinholes (PH1 to PH4) to be adjusted via the Pinhole selection box, display of the relevant channel in the Description field.

Diameter; Pos. X; Y; Z slider: Setting of diameter, X-, Y- and Z-position of the pinhole in relation to the beam path (Z-position can be set only for PH1) using the slider or arrow buttons, status display for setting procedure: green for ready and red for busy.

Store current Position button: Storage of the current pinhole setting.

Move to stored Position button: Pinhole setting is reset to the position last stored.

Adjust Automatically button: Automatic pinhole adjustment.

Fast Adjust mode check box: If this check box is activated, the pinhole adjustment is only performed in a limited area. Used for readjustment.
(2) **Collimator panel**

Collimator Description field: Selection of the collimator (IR / VIS or UV / VIS) to be adjusted via **Collimator** selection box, display of selected collimator in the **Description** field.

Positions field: Setting of collimator position using the slider or arrow buttons; the display to the right of the slider indicates the current position, status display for setting procedure: green for ready and red for busy.

Store Current Position button: Stores the current the collimator position.

Move To Stored Position button: Sets the collimator to the stored value.

Move to Optimal Position button: Starts the automatic collimator adjustment. Available for most common objectives.
5.10.3.3 Pinhole and collimator adjustment

Adjustment of the LSM 510 pinholes can be performed manually or automatically. If several channels are used to produce the image, all the used pinholes must be adjusted separately.

(1) Manual pinhole and collimator adjustment

The position of the pinhole relative to the detector in terms of X-Y-Z coordinates contributes substantially to image optimization.

Requirements to make pinhole position changes visible immediately:

- The image must be scanned by the continuous scan method.
- Select a fast scanning speed.
- Measurement with Average Number 1 only (no averaging of several measurements).
- On the Channel Settings panel (click on Channels button in the Scan Control window), select the pinhole diameter so as to have the best possible image contrast.

- Click on the Pinhole button in the Maintain subordinate toolbar.
- Select the pinhole to be adjusted from the Description list box.
- Use the Diameter slider to set the smallest possible size which produces a good, high-contrast image.
 - This setting changes the pinhole diameter.
 - The Z Slice display box simultaneously displays the depth resolution corresponding to the pinhole diameter.

Image optimization can be effected with the Range Indicator or in the Line-Scan mode.

- Optimize the pinhole position in X, Y and Z (Z only for PH1) relative to the PMT using the X, Y and Z sliders to maximum image brightness.
- Click on the Save Current Position button to save the pinhole adjustment.
• Removing the Current Positions slider in the Collimator panel allows the collimator to be adjusted to maximum image brightness. Optimum collimator adjustment obtained in this way can be stored by clicking on the Save Current Position button.

• Click on the Stop button to stop the continuous scan.

Please do not make any program manipulations while the automatic pinhole adjustment is running (status display is red - busy).

(2) Automatic pinhole and collimator adjustment

The automatic adjustment allows the LSM 510 pinholes to be used with any combination of beam splitters.

• Click on the Adjust Automatically button.
 - The Requirements for Adjustment window will then appear.

• Meet the requirements listed in the Requirements for Adjustment window and press the OK button.
 - Pinhole adjustment will then run automatically. The adjusting procedure takes approx. 3 min.
 - The determined data are stored automatically and will be available for all further examinations using the same configuration.

• Click on the Move to Preadjust button in the Collimator panel. Optimum positioning of the collimator will be performed. The Default button enables the collimator to be set back to the factory-adjustment.

• Activate the Fast Adjust Mode check box for a faster readjustment.
A change of the pinhole diameter made manually in the Pinhole panel will not be activated in the Scan Control window. Therefore, changes must always be made in the Channel Settings panel of the Scan Control window.

A filter change in Autoadjust is not displayed in the Config. Control window.

Configuration 1 is equipped in such a way that pinhole adjustment for channel 1 can only be made with $\lambda = 488$ nm, NFT 545, NFT 610 or NFT 570.

Please remember that the Z-coordinate for channel 1 is not optimized during the automatic pinhole adjustment. Subsequent optimization can be performed via the Move to Preadjust button in the Collimator panel of the Pinhole & Collimator Control window.

Please do not make any program manipulations while the automatic pinhole adjustment is running (status display is red - busy).

The optimum setting of the collimator must be performed separately for each track via the Move to Preadjust button in the Pinhole & Collimator Control window. If several tracks are activated (Recording), an average value of the positions valid for the various tracks will be set on pressing the Preadjust button. When all the tracks have been defined and are active (only the ticked tracks will be included in the calculation), press the Move to Preadjust button.

5.10.4 DSP (Digital Signal Processor)

The DSP function is used to display the current performance of the system processor for checking purposes.

- Click on the DSP button in the Maintain subordinate toolbar of the Main menu.
 - This opens the DSP Performance window.
- Click on the button to close the DSP Performance window.
5.10.5 Set Find

This function permits the preset parameters of the Find function (see Scan Control, page 5-84) to be matched individually.

- Click on the Set Find button in the Maintain subordinate toolbar of the Main menu.
 - The Auto B&C Control window appears on the screen.
- Change the settings for the Upper Threshold of Data Depth and Gain Correction using the relevant sliders.

The settings can be made individually for each detection channel or for all channels together.

For experiments with increasing of fluorescence over the time it’s necessary to reduce the Upper Threshold of Data Depth for the Find function.

Each slider should be used separately.

- Click on the C button to set the value for the Gain Correction to 100 %.
- If required, activate the Set Amplifier Gain to 1.0 check box.
- Click on the Find button to start sample scanning with the current settings.
- Clicking on Default enables you to activate the default settings again.
- If required, activate Auto B&C for all tracks checkbox for Find function.
5.10.6 Spline

This function permits calibration of the Scanner position signals. This is required for the use of spline curves in the Line scanning mode (see section 5.5.4, (3) Line, page 5-107f).

Fig. 5-213 Calibrate Spline Scan window

5.10.7 DSP Trace

The DSP Trace function is for servicing purposes only and may only be performed by authorized personnel. Its access is therefore password-protected.

5.10.8 Parameter

The Parameter function is for servicing purposes only and may only be performed by authorized personnel. Its access is therefore password-protected.

5.10.9 Reboot

The Reboot function is for servicing purposes only and may only be performed by authorized personnel. Its access is therefore password-protected.

5.10.10 HW/Admin

The HW/Admin function is for servicing purposes and may only be used by authorized service personnel. Its access is therefore password-protected.
5.10.11 Test Grid

The TestGrid function is for servicing purposes only and may only be performed by authorized personnel. Its access is therefore password-protected.
5.11 Window Menu

The **Window** menu includes the additional functions **Full Screen**, **Close All Image Windows**, **Toolbar** and **Scan Information** which are not available from a toolbar.

![Window pull-down-menu](Fig. 5-214 Window pull-down-menu)

5.11.1 Full Screen

This function shows the active **Image Display** window in full screen size.

- Activate the image to be shown in full size by clicking on the image content.
- Click on the term **Window** in the menu bar of the **Main** menu.
 - The **Window** menu (pull-down) will be opened.
- Click on the **Full Screen** line.
 - The image will be displayed in full screen size.
- Click in the image to show it again as an **Image Display** window in normal size.

5.11.2 Close All Image Display Windows

This function closes all the opened **Image Display** windows.

- Open the **Window** menu.
- Click on the **Close All Image Windows** line.
 - All the opened **Image Display** windows will be closed.

In the **Options** menu in the function **Settings** in tab **Save** at position **Save prompt at closing modified windows** it can be determined whether a prompt is shown on **Closing of All Image Display Windows** or not.
5.11.3 Toolbar

This function activates / deactivates (alternately) the toolbar and the subordinate toolbar of the Main menu.

- Open the Window menu.
- Click on the Toolbar line.
 - The toolbars of the Main menu are displayed / not displayed.

5.11.4 Scan and System Information

This function opens the Scan Information window, in which the current scan data are displayed.

The extent of the data displayed in the Scan and System Information window depends on the settings made in the Options menu under Settings (see page 5-207).

- Open the Window menu.
- Click on the Scan Information line.
 - The Scan and System Information window will be displayed.
- Click on the button to close the Scan Information window.

In the Options menu in the function Settings in the change of parameters shown can be determined in the tab Scan Information.
5.12 Help Menu

The Help menu permits activation of the Help function and of a window containing information on the installed software version.

5.12.1 Help

- Open the Help menu.
- Click on the Help line to open the online help.

5.12.2 About

- Open the Help menu.
- Click on the About line to open the About window.

The About window includes important information about the software, such as the software version number, copyright, version numbers of the various program components and firmware, and the Dongle number.

- Click on the Close button to close the About window.
5.13 Display and Analysis of Images

5.13.1 Structure of the Image Display Window

The Image Display window shows the image or images when they are
- scanned by any scanning function (see Scan control and Time series control) or
- loaded from the image database (see Open database-Load) or
- imported by the import function (see Import).

In addition to showing images, the Image Display window offers two toolbars for
- changing the display parameters and save an image or images (see Select toolbar below)
- generating new ways of displaying the data as well as analysis tools (see Display toolbar below).

The Image Display window of the LSM 5 software corresponds to the basic structure of other Microsoft ® WINDOWS applications. The Image Display window can be moved as required within the screen, and its vertical, horizontal and diagonal size can be matched to the current requirements (identical to Microsoft ® WINDOWS).

The caption at the top of the Image Display window contains the control menu for the Image Display window (identical to Microsoft ® WINDOWS), the name of the displayed image, and the Minimize, Maximize and Close buttons.

In the status line at the bottom of the Image Display window, the progress bar of a current scanning procedure and the parameters used for image display are shown and updated when changed.

On the left-hand side of the Image Display window, an overview of the scan parameter is displayed, provided that the Info button of the Display toolbar is activated.

The Settings function of the Options subordinate toolbar with the Image display toolbars tab some of the functions of the Image Display window toolbars can be activated at the opening of a new Image Display window.
It is possible to display the Chan, Zoom, Slice and Overlay image display toolbars immediately on opening an Image Display window. The relevant check boxes to be activated in the Image Display Toolbars tab under Settings (see Options menu).

It is also possible to display the scan parameter of an image (Info button) immediately when an Image Display window is opened. The data to be displayed can be defined (see Image Status Display tab under Settings in the Options menu).

The set of functions available at the Image Display window toolbars depends on the type of image shown. The LSM 5 software handles the following formats:

- frame (single image and Z Stack of images)
- frame time series (time series of images and time series with Z Stack of images)
- line time series (time series of lines and time series with Z Stack of lines)
- point time series (time series of points)
- Lambda series (Lambda Stack of images and time series with Lambda Stack of images)
The following display modes are available for the different acquisition modes:

<table>
<thead>
<tr>
<th>Image type</th>
<th>Frame</th>
<th>Frame</th>
<th>Frame</th>
<th>Frame</th>
<th>Line</th>
<th>Line</th>
<th>Line</th>
<th>Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series type</td>
<td>Z Stack</td>
<td>Time</td>
<td>Lambda</td>
<td>Time</td>
<td>Lambda</td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display functions</td>
<td>xy</td>
<td>xy</td>
<td>xy</td>
<td>xy</td>
<td>xt, tx**</td>
<td>xt, tx</td>
<td>xt, tx</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Split xy*</th>
<th>Split xy*</th>
<th>Split xy*</th>
<th>Coded</th>
<th>Split xt,</th>
<th>Split tx**,</th>
<th>Split tx</th>
<th>Coded</th>
<th>Split tx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ortho</td>
<td>Cut</td>
<td>Gallery</td>
<td>Gallery</td>
<td>Gallery</td>
<td>Gallery</td>
<td>Gallery</td>
<td>Gallery</td>
<td>Gallery</td>
</tr>
<tr>
<td>Histo</td>
<td>Histo</td>
<td>Histo</td>
<td>Histo</td>
<td>Histo</td>
<td>Histo</td>
<td>Histo</td>
<td>Histo</td>
<td>Histo</td>
</tr>
<tr>
<td>Profile</td>
<td>Profile</td>
<td>Profile</td>
<td>Profile</td>
<td>Diagr</td>
<td>Diagr</td>
<td>Diagr</td>
<td>Diagr</td>
<td>Diagr</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean</td>
<td>Lambda</td>
<td>Mean</td>
<td>Mean</td>
<td>Lambda</td>
<td>Mean</td>
<td>Lambda</td>
<td>Mean</td>
</tr>
<tr>
<td>Select</td>
<td>Select</td>
<td>Select</td>
<td>Select</td>
<td>Select</td>
<td>Select</td>
<td>Select</td>
<td>Select</td>
<td>Select</td>
</tr>
<tr>
<td>2.5 D</td>
</tr>
<tr>
<td>3D**</td>
<td>3D***</td>
<td>3D**</td>
<td>3D**</td>
<td>3D**</td>
<td>3D**</td>
<td>3D**</td>
<td>3D**</td>
<td>3D**</td>
</tr>
<tr>
<td>Topo**</td>
<td>Topo***</td>
<td>Topo**</td>
<td>Topo**</td>
<td>Topo**</td>
<td>Topo**</td>
<td>Topo**</td>
<td>Topo**</td>
<td>Topo**</td>
</tr>
<tr>
<td>Info</td>
<td>Info</td>
<td>Info</td>
<td>Info</td>
<td>Info</td>
<td>Info</td>
<td>Info</td>
<td>Info</td>
<td>Info</td>
</tr>
</tbody>
</table>

* only active in case of multi channel images
** inactive
*** optional

All display functions are exclusive functions. Only one can be active at a given time. To generate different views of the same image set use the Duplicate function in the Process menu.

During image acquisition all active display functions can be used.
5.13.2 Select - Chan

This function permits to

- change the color assignment of channels of images
- switch individual channels of a multi channel image on/off
- switch to monochrome display of the image instead of color display

Click on Chan will display the Channels toolbar. Any changes done with this toolbar are effective immediately.

- Click on the Chan button in the Select toolbar.
 - The Channels toolbar will be displayed on the right-hand side of the Image Display window.
- Click on the Chan button again to remove the Channels toolbar.

![Image Display window; Select - Chan](image.png)
(1) Assigning another color to a channel

- Click on one of the channels button in the Channels toolbar (e.g.: Ch1).
 - The color selection box with all the currently defined colors will appear.

- Click on the required color.
 - The selected color will be assigned to the current channel, the color selection box is closed and the displayed image is updated. The control box of the channel button (e.g.: Ch1) also shows the selected color.

(2) Switching a channel of a multi channel image off or on

- Click on one of the channel buttons in the Channels toolbar (e.g.: Ch1).
 - The color selection box will appear.
- Click on OFF to deactivate the display of the relevant channel.

A newly assigned color or a channel switched off is not taken into consideration during the following scanning procedure, since the setting in the Configuration Control window always applies here.
(3) **Switching to monochrome image display**

- Click on the **Mono** button in the **Channels** toolbar.
 - The image will then be displayed in shades of gray exclusively. If you click on the button again, the channels will be displayed in color again.

- If you want to view the channels individually, select the split display by clicking on **Split xy** button in the **Display** toolbar.

(4) **Defining a new color**

- Click on the **Colors** button to open the **Channel Colors** window.
 - Define a new color in the same way as in the **Configuration Control** window (see page 5-69).
5.13.3 Select - Zoom

This function allows to change the zoom factor of an image displayed.

Click on Zoom will display the Zoom toolbar. Any changes done with this toolbar are effective immediately.

The image can be zoomed by various methods. The zoom function can be performed online.

- Click on the Zoom button in the Select toolbar.
 - The Zoom toolbar will be displayed on the right-hand side of the Image Display window.
- Clicking on the Zoom button again will remove the Zoom toolbar.

Fig. 5-223 Image Display window; Select - Zoom
Zoom-Auto

The image is fitted automatically to size of the **Image Display** window.

Zoom-Resize

Restores the image to its initial size.

Zoom+

Enlarges the image by factor 2.

Zoom−

Reduces the image by factor 2.

Zoom 1:1

Restores an image zoomed in any way to its original size.

Zoom-Mouse

Allows you to enlarge / reduce the zoom factor of an image using the left / right mouse button, provided that the cursor is inside the image.

Zoom+, Zoom−, Zoom 1:1 and Zoom-Mouse can only be defined when the **Zoom-Auto** function is deactivated.

Slider with display box

The zoom factor can be set by moving the slider. The display box below displays the current zoom factor. Factor 1 corresponds to the original size.
5.13.4 Select - Slice

This function allows to
− select and view individual slices from a Z Stack or a time series, when images were acquired in frame mode.

The button is grayed, when these conditions are not true.

Click on Slice will display the Slice toolbar. Any changes done with this toolbar are effective immediately.

• Click on the Slice button in the Select toolbar.
− The Slice toolbar is displayed on the right-hand side of the Image Display window.
• If you click on the Slice button again, the Slice toolbar is removed.

Fig. 5-224 Image Display window; Select - Slice

Example:
Slice No. 10 from a Z Stack or time series of 20 slices

• Select the slices using the slider on the right.
5.13.5 Select - Overlay

This function allows to
- select from a set of drawing functions such as rectangles and arrows
- add a scale bar to the image
- use a set of interactive measurement functions for length, angle and size

The overlay function uses a plane separate from the image plane (the graphics plane) and does therefore not change the content of the image(s).

The button is only available if the XY or Split XY Display functions are selected. Otherwise it is grayed. Some of the Display functions such as Ortho or Cut turn the overlay graphics off temporarily.

Any changes done with this function are effective immediately.

The overlay graphics can be stored together with images and can be retrieved from the LSM 5 image database.

- Click on the Overlay button in the Select toolbar.
 - The Overlay toolbar will be displayed on the right-hand side of the Image Display window.
- If you click on the Overlay button again, the Overlay toolbar will be removed.

Provided that the display of the overlay elements has not been deactivated by clicking on the Off button, the created elements will still be displayed in the Image Display window even after closing of the Overlay toolbar.

![Image Display window; Select - Overlay](image.png)
The following functions can be used on activation of the buttons in the **Overlay** toolbar:

- **Arrow** (selection) button: Activation of the mouse button for selection, resizing or movement of an overlay element in the **Image Display** window.
Resizing: Click on the handle and hold down the mouse button, drag the handle, release the mouse button.
Movement: Click on the line and hold down the mouse button, move the entire element, release the mouse button.

- **Line** button: Creation of a straight line in the **Image Display** window. Click and hold down the mouse button, draw a line in any required direction, release the mouse button to end the procedure.

- **Rectangle** button: Creation of a rectangle in the **Image Display** window. Click and hold down the mouse button, draw a rectangle in any required direction, release the mouse button to end the procedure.

- **Closed polyline** button: Creation of a closed polyline figure in the **Image Display** window. The first click sets the starting point, each additional click adds a further line, a click with the right mouse button closes the figure and ends the procedure.

- **Open polyline** button: Creation of an open polyline figure in the **Image Display** window. The first click sets the starting point, each additional click adds a further line, a click with the right mouse button ends the procedure.

- **Ellipse** button: Creation of an ellipse in the **Image Display** window. The first click sets the center point, the displayed line permits the determination of the first dimension, the second click sets the first dimension, the second dimension and rotation direction can then be determined, the third click sets the second dimension and direction and ends the procedure.

- **Closed free-shape curve** button: Creation of a closed Bezier figure in the **Image Display** window. The first click sets the starting point, each additional click adds a further line, a click with the right mouse button closes the figure and ends the procedure.

- **Open free-shape curve** button: Creation of an open Bezier figure in the **Image Display** window. The first click sets the starting point, each additional click adds a further line, a click with the right mouse button closes the figure and ends the procedure.

- **Circle** button: Creation of a circle in the **Image Display** window. Clicking and holding down the mouse button sets the center point, drag the diameter and release the mouse button to end the procedure.

- **Line with arrow** button: Creation of a line with arrow in the **Image Display** window. Click and hold down the mouse button, drag the line in any required direction, release the mouse button to end the procedure.
Scale button: Creation of a horizontal or vertical scale with default increments in the Image Display window. Click and hold the mouse button for the starting point, drag horizontal or vertical scale, release the mouse button to end the procedure.

Gray tones / color shades button: Generates a rectangle with a display of gray tones or color shades in the image. Color shades are displayed if a palette has been loaded, with different colors being assigned to the gray tones.

A (Text) button: Creation of a text box in the Image Display window. After clicking on A, the Text window will be displayed, and text can be entered via the keyboard. The Font ... button enables you to select the font style and size in the Font window. The entered text will be displayed in the left upper corner of the Image Display window after clicking on OK and can be moved to the required position using the mouse. The Text window can also be activated with a double-click on a created text box, and the entered text can be edited subsequently.

Recycle bin button: All the overlay elements and dimensions dragged to the scanned image are deleted. If one overlay element was marked before, this element is now deleted from the scanned image.

Multiple button: On activation of this button, the overlay function subsequently selected is performed several times in succession, without the need to activate the function button again. This function remains selected until the Multiple button is deactivated again.

Measure button: Measurement of the overlay element in the Image Display window. On activation of the Measure button, the selected overlay element and all the elements created afterwards are measured and assigned with a measuring value. The measuring value can be shifted without regard to the overlay element. If of importance, the length and perimeter of a line figure, the area of a closed figure and the inclination angle of a single line will be displayed. On deactivation of the Measure button, the measuring value of the selected element is no longer displayed, and all the elements created afterwards will not be assigned with a measuring value.

Off button: Deactivation of the display of overlay elements in the Image Display window (hide overlay). Deactivation of the overlay functions.

Line button: This button allows you to determine the line thickness of the area outline.

Cut button: The image contents of an overlay element are cut out, and the area will then appear in black.

Copy button: The image contents of a closed overlay element are copied to the clipboard.
Paste button: The image contents of an overlay element copied to the clipboard are inserted in the current **Image Display** window and can be positioned anywhere in the image using the mouse.

Undo button: The last **Cut** or **Paste** action can be undone by clicking on the **Undo** button.

Extract Region button: The region of a Z Stack or 4D-image surrounded by an **Overlay** element is extracted and can be displayed and stored separately in a new **Image Display** window. This function is only active if an **Overlay** element is used, that generates a closed contour.

Color selection box: The colors displayed in the **Color** selection box can be assigned to the overlay elements with a click of the mouse. The currently selected color is displayed in the larger rectangle (left top) of the selection box. A selected color is automatically assigned to the currently selected overlay element and then to all the elements created afterwards.
5.13.6 Select - Contr

This function allows to
- change the contrast and brightness of an image
- change the contrast and brightness of a channel of an image
- define interactively a new relationship between the intensities of pixels in the image memory and the displayed values of this pixel intensities on the computer screen

Click on **Contr** will display the **Contrast** toolbar. Any changes done with this toolbar are effective immediately.

Modification done by this function are for display purposes only. To permanently change the contrast and brightness of an image use the function **Contrast** in the **Process** menu.

- Click on the **Contr** button in the **Select** toolbar.
 - The **Brightness and Contrast** window will be displayed.
- Change brightness and contrast via the sliders in the **Brightness and Contrast** window. You can adjust each channel individually by activating the channel button (e.g.: **Ch1**), or influence all channels simultaneously by clicking on **All**.

- Clicking on the **Reset** button will reset the original setting of brightness and contrast.
- Clicking on the **Close** button will close the **Brightness and Contrast** window.

Further contrast and brightness parameters can be activated or deactivated alternately using the **More** and **Less** buttons.

- Click on the **More** button to display the additional functions.
 - The **Brightness and Contrast** window will be enlarged, the labeling of the button changes from **More** to **Less**. If you click on **Less**, the additional functions are no longer displayed.
Simultaneously with the setting of brightness and contrast, the intensity values of the image can be set directly in the **Intensity Screen** via the **Ramp**, **PolyLine**, **Spline** and **Gamma** functions.

The intensity values can also be set either for all channels together or individually.

If the image has already been changed using the **Contrast** and **Brightness** sliders, this setting difference is displayed in the **Intensity Screen** by means of the **Shape** and **Result** lines.

(1) Ramp

The intensity is set via two knots in the **Intensity Screen**, which allows an intensity line to be created in the form of a ramp.

The original line form is reset via **Reset**.

The line form will be retained even when the additional functions are no longer displayed, and on closing the **Brightness and Control** window.

Fig. 5-228 Brightness and Contrast window with activated Ramp function
(2) PolyLine

The intensity is set in the Intensity Screen via a freely selectable number of knots, which permits the creation of an intensity line in the form of a polyline. The number of knots can be selected from the Number of Knots selection box.

The original line form is reset via Reset.

The line form will be retained even when the additional functions are no longer displayed or when the Brightness and Control window is closed.

(3) Spline

The intensity is set in the Intensity Screen via a freely selectable number of knots, which permits the creation of an intensity line in the form of a spline. The number of knots can be selected from the Number of Knots selection box.

The original line form is reset via Reset.

The line form will be retained even when the additional functions are no longer displayed or when the Brightness and Control window is closed.
(4) Gamma

The intensity is set in the **Intensity Screen** by varying the gamma curve (clicking and dragging with the mouse) or by moving the **Gamma** slider. It is possible to set gamma values between 0.1 and 2.0.

The original line form is reset via **Reset**.

The line form will be retained even when the additional functions are no longer displayed or when the **Brightness and Control** window is closed.

![Brightness and Contrast window with activated Gamma function](image-url)
5.13.7 Select - Palette

This function allows to
- change the palette used for displaying the image(s)
- define and save new palettes
- delete palettes by removing them

Click on Palette will display the Palette toolbar. Any changes done with this toolbar are effective immediately.

The standard palettes No palette, Range indicator, Glow Scale and Rainbow are system palettes and can not be deleted.

The Range indicator palette is useful to optimize the gain and offset setting of images in the Scan control window before scanning.

Palettes are stored and retrieved together with the images when archived in the Image Database.

- Click on the Palette button in the Select toolbar.
 - The Color Palette window will be displayed.
- Select the required palette from the Color Palette List panel by clicking on the relevant name.
- If you want to deactivate a palette selected before, click on No Palette in the Color Palette List panel.
- Click on the Close button to close the Color Palette window.
- A changed image can be stored via the Save As function.

In the Options menu in the function Settings it is possible to switch to Mono automatically when a palette is activated and to Colour on deactivation of a palette.

In addition it is possible to activate / deactivate Mono in the Channel toolbar.

Some of the handling functions of the Image Display window toolbars can be activated at the opening of a new Image Display window.
(1) **Editing and storing a palette**

A palette is edited by moving the knots in the **Ramp**, **Polyline** and **Spline** functions (identical to the setting in the **Contrast and Brightness** window, see page 5-252f).

The palette can be set for all colors together or separately for each color.

- Activate the relevant button: **Red**, **Green**, **Blue** or **All**.

Proceed as follows to store an edited palette under a new name:

- Click on the **Add To List** button: the **Add Palette To List** window will be displayed.
- Enter a name for the palette and click on **Ok**.
 - The palette will be stored and the name included in the **Color Palette List** panel.
(2) Delete a palette

Proceed as follows to delete a palette:

- Click on the name of the palette to be deleted in the Color Palette List panel and then on the Remove button.
 - The palette will be removed from the list.

Note: The standard settings (No Palette, Range Indicator, Glow Scale and Rainbow) cannot be deleted.

(3) Import a palette

Proceed as follows to import a palette:

- Click on the Import button. The Import Palette window will be opened.
- Select the required palette (file extension: *.lut) from the relevant directory and click on Open.
 - The palette will be imported and displayed in the Color Palette List panel.

File with the extension *.lut are LSM 310 / 410 palette files.
5.13.8 Select - Anim

This function allows to

- animate frames of a Z Stack or a time series
- specify animation parameters such as range and animation speed

Click on Anim will display the Animate toolbar. Any changes done with this toolbar are effective immediately.

When the image(s) displayed in the Image Display window is neither a Z Stack nor a time series this button is grayed and not accessible.

- Click on the Anim button in the Select toolbar of the Image Display window of a stack.
 - The Animate window will be displayed and the animation started immediately.
- Click on the Close button to close the Animate window and to stop the animation.

The animation is controlled via the following function elements:

- **Current Slice** slider: Manual movement through the individual slices of a stack by moving the slider, or by entering the slice number in the input box. Slider can be accessed only, when the automatic animation is off.

- **Start** slider: The setting of the Start sliders limits the number of slices to be used for the animation. Previous slices are not taken into consideration for the animation. Can be changed during automatic animation.

- **End** slider: The setting of the End slider limits the number of slices to be used for the animation. Subsequent slices are not taken into consideration for the animation. Can be changed during automatic animation.

- Starts the forward motion of the automatic animation. After the last slice has been passed, restart is made at the first slice.

- Starts backward motion of the automatic animation. After the first slice has been passed, restart is made at the last slice.

- Starts the combined forward / backward motion of the automatic animation, i.e., when the last slice has been reached, the backward motion is activated, and the forward motion is activated again on reaching the first slice.

- Stops the automatic animation.

- Move to the first slice.
After each click on this button, backward motion is made by the number of slices set under **Increment**.

After each click on this button, forward motion is made by the number of slices set under **Increment**.

Move to the last slice.

Speed1 / **Speed2** buttons / sliders: Selection between two speeds, change of the relevant speed via slider or input box.

Increment slider: Reduction of the slices to be displayed by selecting an increment n (step width) of slices to be taken into consideration for the animation. If n = 3, for example, only every third slice of the stack will be displayed during the animation.
5.13.9 Select - Reuse

This function allows to

- transfer acquisition parameters of an image from the image data base to the Microscope control, Configuration Control, Scan Control, Time Series Control and Bleach Control windows and applies those parameters directly on the system.

The acquisition parameters of an image are displayed in the Image Display window and can be viewed by using the Info function. In the tab Image Status Display in the Settings function of the Options subordinate toolbar it can be determined what parameters to view with the Info function.

The parameters include the following:
Frame Size, Speed, Data Depth, Scan Direction, Average, Zoom Rotation, Offset, Pinhole diameter, Detector Gain, Amplifier Offset, Amplifier Gain, Excitation, Beam Path and Scan Mode (Line, Frame, Stack, Time Series). However, the required objective must be selected by the user.

- Click on the Reuse button. The acquisition parameters of the active image (stack) are applied immediately to the system.

In the Options menu in the function Settings with the Recording/Reuse tab, it can be determined whether the objective should also be transferred and set. Setting the microscope objective only works in microscopes with motorized objective revolvers.
5.13.10 Select - Crop

This function allows to

− interactively define the size and orientation of a rectangular scan area on the image displayed in the Image Display window.

− The defined area is displayed together with the Zoom, Offset and Rotation parameters in the Scan Control window in the Mode submenu.

Click on Crop will display the Crop Rectangle in the Image Display window. Any changes done with the Crop Rectangle are setting the parameters immediately. On the next execution of a scan (Find, Fast xy, Single, Continuous in Scan Control or Start T or Start B in Time Series Control) these new scan parameters will be used.

To reset the crop function and use default values set Zoom=1, Offset=0 and Rotation=0 in the

Scan Control window in the Mode submenu.

• Click on the Crop button.
 − The Crop Rectangle will appear on the Image Display window.

The Crop Rectangle is controlled via the following functional elements:

Offset

• Click into the crop rectangle, keep the left mouse button pressed and drag the crop rectangle to the required position. Release the mouse button.

Zoom

• Click on a corner of the crop rectangle, keep the left mouse button pressed and set the required size. Release the mouse button.

Rotation

• Click on one end of the crosslines, keep the left mouse button pressed and set the required rotation angle. Release the mouse button. The first line scanned is highlighted in blue.

Side ratio

• Click on any of the intersection points between crossline and crop rectangle, keep the left mouse button pressed and change the side ratio as required. Release the mouse button.
5.13.11 Select - Copy

This function allows to
− copy the current displayed image into the clipboard.

Click on Copy will be immediately effective.

From the clipboard images can be incorporated into other programs such as MS Excel, MS Powerpoint or MS Word.

To export image series, use the Export function in the File menu.

- Click on the Copy button.
 - The content of the Image Display window is copied to the clipboard.
- Start the clipboard application of WINDOWS.
- Select Paste in the Edit menu of the Clipboard application.
5.13.12 Select - Save

This function allows to
- save the image(s) of the Image Display window into an Image Database
- by not showing a dialogue and using the automatic assigned and incremented image name and a predefined existing Image Database
- Prerequisite: Autosave is checked in the Settings function with the Autosave tab

Click on Save will be immediately effective.

When the prerequisite is not met, the Save As dialogue is displayed.

In the Options menu in the function Settings with the Autosave tab parameters such as an automatically incremented filename can be determined and the Autosave activated/deactivated.

5.13.13 Select - Save As

This function allows to
- save the image(s) of the Image Display window into an Image Database
- by showing a dialogue
- use the defaults as defined in the Settings function with the Save tab

Click on the Save As button displays the Save Image and Parameter As window. Changes will be effective on closing this dialogue.

In the Options menu in the function Settings with the tab Save default parameters such as Name, Description and Notes can be set.

- Click on the Save button.
 - The Save Image and Parameter As window appears
- Enter text for the image name, description, notes or change the user name.
- Select the Image Database from the list of databases (MDB) or
- Open other Image Databases by selecting Open MDB or
- Create new Image Databases by selecting New MDB.
5.13.14 Display - xy

This function allows to
- display a single image in frame mode
- display multi channel images in superimposed mode

The settings of Chan, Zoom, Slice, Overlay, Contr and Palette are applied.
Click on xy will be immediately effective.
5.13.15 Display - Split xy

This function allows to:
- display the individual channels of a multi channel image as well as the superimposed image

The settings of Chan, Zoom, Slice, Overlay, Contr and Palette apply.

Click on Split xy will be immediately effective.

![Image Display window, Split xy display](image)

This function is useful to optimize the individual channels in a multi channel image acquisition together with the Range Indicator palette.
5.13.16 Display - Ortho

This function allows to
- display a Z Stack of images in an orthogonal view
- measure distances in three dimensions
- generate 2D deconvolution views of the yz and xz plane

The settings of Chan, Zoom, Slice, Overlay, Contr and Palette apply.

Click on Ortho will be immediately effective.

- By clicking on the Ortho button section lines appear in the Display toolbar together with orthogonal projections in the image. On the right-hand side, the Orthogonal Sections toolbar is shown.
5.13.16.1 Ortho - Select function

- By changing the parameters X, Y and Z in the Orthogonal Sections toolbar, the section plane can be positioned at any XYZ coordinate of the Z Stack.

The position of section planes can be changed in various ways:

- By moving the sliders on the Orthogonal Sections toolbar.
 - X and Y settings may range from 1 up to the maximum number of pixels scanned (in the example shown: 512).
 - Z settings may range from 1 to a maximum of n, with n standing for the number of slices produced in the stack.

- By directly entering the relevant number value in the X-, Y- or Z-input box and pressing the Enter key.

- If you move the cursor into the Image Display window, it changes into a crosslines symbol ◄. By dragging this symbol with the mouse you can position the XZ and YZ section planes to any point of intersection with the XY plane. A click with the left mouse button places the intersection to the desired position.

- If you move the crosslines symbol ◄ onto the intersection of the red and green section planes, it changes into the: ◄ symbol. If you now press the left mouse button and keep it pressed you can reposition both section planes simultaneously.

- If you move the crosslines symbol ◄ onto the green section plane, it changes into the ◄ symbol. If you now press the left mouse button and keep it pressed, you can reposition the (green) XZ section plane.

- You can reposition the (red) YZ plane in the same way using the ◄ symbol.

The result of an orthogonal section is visible at the image margin.

- Section of the XZ plane (green line) through the stack: above the XY image.
- Section of the YZ plane (red line) through the stack: right of the XY image.
- Section of the XY plane (blue, slice plane of the stack): center image.
5.13.16.2 Ortho - Distance function

- Activating the Dist. button permits length measurements in 3D space.

- Click on the Mark button to set the first XYZ-point for the measurement of the spatial distance.
- Set the second XYZ-point for measurement by moving the X-, Y-, Z-sliders or by moving the green, red and blue lines in the image.
 - The projections of the spatial distance are shown in the image planes by yellow lines. The actual spatial distance is calculated and shown in µm below the Select, Dist. and Mark buttons, e.g. 3D Distance: 55.60 µm.
5.13.16.3 Ortho - 2D DeConVolution function

The 2D deconvolution function causes orthogonal projection enhancement through the computed correction of the resolution in the Z-coordinate.

Image enhancement is only effective for the two projections of a fluorescence stack in the Ortho display or for an XZ-scan in fluorescence, and is also only computed for this.

- Activate the 2D DCV button in the Orthogonal Sections toolbar.
- If the Fast button is activated, calculation of the 2D-deconvolution (inverse DCV mode) is performed immediately.
- The 2D DCV settings button can only be activated if a licence for the 3D DCV option has been purchased. Otherwise this button is grayed.
- Click on the Settings button. The 2D Deconvolution window is opened.

The 2D Deconvolution window contains the Deconvolution panel with the two tabs Method and PSF.

![Method tab](image)

(1) Method tab

The Method tab enables you to choose between the calculation methods Inverse and Iterative.

For more details of explanation of deconvolution and the calculation methods see section 3D DeConVolution (page 5-168).

In the Inverse method, the Restoration Effect slider can be used to set the signal-to-noise ratio between Weak (low noise) and Strong (pronounced noise).

Activation of the Auto detect check box starts a routine for the automatic determination of the noise level in the entire image part of the Z Stack. If Auto detect is enabled, the Restoration Effect slider is disabled.
The **Iterative** method permits (in addition to the parameters of the **Inverse** method) the maximum number of iterations to be entered between 1 and 200 under **Maximum Iterations** and the **Auto Stop** function to be activated / deactivated. The **Auto Stop** function interrupts the calculation depending on the set image improvement (delta between last but one and last cycle in %), no matter whether the value under **Maximum Iterations** has been achieved or not.

(2) **PSF tab (optional with 3D DCV)**

The objective data are displayed in the **Method** tab. In the case of wavelengths above 700 nm, the **NLO** button is automatically enabled.

The displayed values are always taken over by the system data, but can be edited subsequently for simulation purposes.

- Select the required method and determine the relevant parameters.

The deconvolution calculation is performed immediately after the **2D Deconvolution** window has been closed, and the image display is updated (on-line).

Fig. 5-240 PSF tab
5.13.17 Display - Cut

This function allows to
- display a Z Stack of images at a user defined section plane (= cut plane)
- improve the image of the section plane by trilinear interpolation

The settings of Chan, Zoom, Slice, Contr and Palette are applied.

Click on Cut will display the Cut toolbar. Any changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

- Clicking on the Cut button in the Display toolbar opens the Cut toolbar to the right of the Image Display window.

Fig. 5-241 Image Display window, Cut display

- By varying the parameters X, Y, Z, Pitch and Yaw, you can position a section plane of any orientation within the stack volume.
- The resulting position of the section plane is shown as a red area below the Trilinear Interpolation button. At the same time, the result is shown in the Image Display window.
- A click on the Reset All button restores the original position.
- A click on the Trilinear Interpolation button will improve the quality of the image by performing a 3D interpolation of the image.
5.13.18 Display - Gallery

This function allows to
- display images (Z Stack, time series, combination of both) side by side in tiled fashion
- add data relevant to the images displayed (Z Stack slice distance, time of acquisition or wavelength)
- extract a subset of images from the original stack and store the result as a new image

The settings of Chan, Zoom, Slice, Contr and Palette apply.

Click on Gallery will display the Gallery toolbar. Any changes done with this toolbar are effective immediately.

- A click on the Gallery button in the Display toolbar not only produces the gallery itself but also the Gallery toolbar with two buttons: Data button and Subset button.

- Clicking on the Data button shows the Z Slice distance, the acquisition time or the wavelength or combinations.
- Clicking on the color selection button (below the Data button) will open a color selection window allowing you to choose - at a click of the mouse - in which color the data will be shown in the gallery display.
• Clicking on the **Subset** button opens another window entitled **Subset**, in which you can select images of the set of images displayed.
 - A stack consisting of the selected images only is generated and displayed.

• Select **Start Slice** and **End Slice** via the sliders, the input box or the **Click** (into window) button.

• Enter a value for **n** in the **Every n-th Slice** panel.

• If required, activate the **Convert 12 bit to 8 bit** check box.

• Clicking on the **Ok** button will generate a new subset of images.

• **Cancel** will stop the procedure.
5.13.19 Display - Histo

(1) Display - Histo - Overview

This function allows to
- display a histogram (distribution of pixel intensities) of an image
- show the histogram values in table form
- copy table to clipboard or save as text file
- analyze the colocalization between two channels
- measure area and mean gray value and standard distribution in an area
- show separate histograms for each channel in a multi channel image

Colocalization is only available in case of a two or multi channel image.

The settings of Chan, Zoom, Slice, Contr and Palette are applied.

Click on Histo will display the Histogram toolbar. Any changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

- Click on the Histo button. The Histogram toolbar will be displayed on the right.

Fig. 5-244 Image Display window, Histogram display

The Histo button can also be used online during scanning.
The **Histogram** toolbar contains the following function elements:

Histogram functions

Skip Black button
Ignore black pixels (gray value 0) in the histogram.

Skip 4 % button
Ignore the lower 4% of the intensities in the histogram.

Skip White button
Ignore white pixels (gray value 255 or 4096) in the histogram.

Step input box
Set the number of intensity steps which shall be displayed in the diagram. Step 1 corresponds to 256 intensity steps, Step 64 to 4 intensity steps in case of 8 bit images. Reduction is made by averaging.

Show Image button
Shows the image in the **Image Display** window beside the histogram.

Show Table button
The histogram is shown as a table at the bottom left of the **Image Display** window.

Copy Table button
The histogram table is copied to the clipboard.

Save Table button
The histogram table can be stored as a text file (extension *.txt).

Area function

Area button
Interactive definition of area for size and intensity measurement.

Save Values button
Copies area values to the clipboard (only available if the **Area** button is activated).
(2) Area function

- Click on the Area button in the Histogram toolbar.
 - The function elements for Area measurement are displayed at the bottom right of the Histogram toolbar.

![Image Display window, Area Measure display](image)

The following function elements are available:

- **Step**
 - Set the number of intensity steps which shall be displayed in the diagram. Step 1 corresponds to 256 intensity steps, Step 64 to 4 intensity steps in case of 8 bit images. Reduction is made by averaging.

- **Low**
 - **Threshold low** slider with **Color** selection button: The intensity values below threshold are not displayed. The removed areas are masked in the color selected in the **Color** selection button.

- **High**
 - **Threshold high** slider with **Color** selection button: The intensity values above threshold are not displayed. The removed areas are masked in the color selected in the **Color** selection button.

- **Ch1, Ch3 ...** buttons: Selection of the channel for which the area measurement is to be performed.

- **Display box**: Display of the mean value and the standard deviation of the non-masked area. Area measurements of very small areas (< 10 pixels) give only approximate values.
Arrow (selection) button: Activation of the mouse button for selection, resizing, or movement of a mask element in the Image Display window.

Resize: Click on handle and hold down the mouse button, drag the handle, release mouse button.

Movement: Click on line and hold the mouse button, move the entire figure, release mouse button.

Closed polyline button: Creation of a polyline figure in the image. The first click sets the starting point, each additional click adds a further line, a click with the right mouse button closes the figure and ends the procedure.

Recycle bin button: All the mask elements are deleted. If one element was marked before, this element is now deleted from the image.

Mask button: Enables the Mask Mode, where the region can be defined with ink.

Rectangle button: Creation of a rectangle in the image. Click and hold down the mouse button, drag a rectangle in any direction, release the mouse button to end the procedure.

Ellipse button: Creation of an ellipse in the image. The first click sets the center point, the displayed line permits the determination of the first dimension, the second click sets the first dimension, the second dimension and the rotation direction can then be determined; the third click sets the second dimension and the direction and ends the procedure.

Line button: Determines the line thickness of the area outline.

Flood fill button: Fills the overlay element or the scatter diagram with the color selected under Mask.

Closed free-shape curve button: Creation of a closed Bezier figure in the scatter diagram. The first click sets the starting point, each additional click adds a further line, a click with the right mouse button closes the figure and ends the procedure.

Circle button: Creation of a circle in the scatter diagram. Clicking and holding down the mouse button sets the center point; drag the diameter and release the mouse button to end the procedure.

Color selection button: The colors displayed in the selection box can be assigned to the mask elements with a click of the mouse. The currently selected color is always displayed in the larger rectangle (top left) of the selection box.

Clear Mask button: Removes the color filling from an overlay element or from the scatter diagram.

- The function can be activated by clicking on one of the geometry buttons, e.g. \(\text{polyline}\).
- The figure of interest can be marked in the image by cursor control in conjunction with a mouse click.
• Clicking on the **Flood fill** button (paint jar) and moving the cursor to the area to be excluded causes the remaining area to be computed and the result indicated under **Area Measure**.

![Image Display window, Area Measure display](image1)

Fig. 5-246 Image Display window, Area Measure display

• If you specify a top and bottom intensity threshold, the area lying within this intensity interval can be computed.

• Specify the thresholds either with the **Threshold low** and **Threshold high** sliders, or with the ![up](image) and ![down](image) buttons.

![Image Display window, Area Measure display](image2)

Fig. 5-247 Image Display window, Area Measure display

• Click on the **xy** button of the **Display** toolbar if you want to return to the original image.
(3) **Colocalisation function**

The **Colocalisation** function permits interactive analysis of two channels of an image by computing a scatter diagram (colocalisation).

- Click on the **Colocalisation** button. The scatter diagram is created and displayed beside the image.

How a scatter diagram is generated:

All pixels having the same positions in both images are considered a pair. Of every pair of pixels (P1, P2) from the two source images, the intensity level of pixel P1 is interpreted as X coordinate, and that of pixel P2 as Y coordinate of the scatter diagram. The value of the pixel thus addressed is increased by one every time, up to the maximum number of pixels used. This way, each pixel of the scatter diagram is a value that shows how often a particular pair of pixels has occurred.

Differences between the images cause irregular spots in the scatter diagram.

![Image Display window, Colocalization display](image-url)

Fig. 5-248 Image Display window, Colocalization display
Identical images produce a clean diagonal line running from bottom left to top right, because only pixel pairs (0,0), (1,1), (2,2) with the same intensity can occur. Differences between the images cause an irregular distribution in the scatter diagram.
The following function elements are available:

Colocalisation button Displays the scatter Histogram of the two image channels

Show table button Adds display of the according data table

Area button Adds display of the image

Crosshair button Displays a movable crosshair for different areas in the scatter histogram

Threshold button Opens the **Intensity Threshold** window to sets threshold for colocalisation in the scatter histogram.

Set from Image ROIs button: Sets background threshold from ROI (Threshold button)

Cut Mask button:

Channel Toggle button:

Invert Mask button: Inverts the mask or the scatter diagram.

Source 1 selection box with Color selection box: Selection of the first channel to be selected via the selection box, assignment of a defined color via the **Color** selection box.

Source 2 selection box with Color selection box: Selection of the second channel to be selected via the selection box, assignment of a defined color via the **Color** selection box.

Mask selection box with Color selection box: Selection of **RGB** or **Overlay** display of the mask, assignment of a defined color via the **Color** selection box.

Drawing tools Allows the selection of ROIs in the Histogram and the Image

Save at drawing tools Stores ROIs and threshold settings
Enhanced colocalisation

Scattergram, image display and data table are interactively linked:

Fig. 5-250 Image Display window, Colocalization display

Scattergram and thresholding with crosshair:

Fig. 5-251 Scattergram and thresholding with crosshair
Select ROIs in scattergram and view corresponding pixels in image display:

![Image Display window, Colocalization display](image1.png)

Fig. 5-252 Image Display window, Colocalization display

Select ROIs in image display and view corresponding pixels in scattergram:

![Image Display window, Colocalization display](image2.png)

Fig. 5-253 Image Display window, Colocalization display
Quantitative Parameters:
- **No. of pixels** in image ROI or scatter region
- **Area / relative area** of image ROI or scatter region
- **Mean intensities / SD** within image ROI or scatter region
- **Colocalization coefficients**
- **Weighted colocalization coefficients**
- **Overlap coefficient** after Manders
- **Correlation coefficients** (R and R^2)

Colocalization coefficients

$$c_1 = \frac{\text{pixels}_{Ch1,\text{coloc}}}{\text{pixels}_{Ch1,\text{total}}} \quad \quad c_2 = \frac{\text{pixels}_{Ch2,\text{coloc}}}{\text{pixels}_{Ch2,\text{total}}}$$

- Relative number of colocalizing pixels in channel 1 or 2, respectively, as compared to the total number of pixels above threshold.
- Value range 0 – 1 (0: no colocalization, 1: all pixels colocalize)
- All pixels above background count irrespective of their intensity.

Weighted colocalization coefficients

$$M_1 = \frac{\sum_i Ch1_{i,\text{coloc}}}{\sum_i Ch1_{i,\text{total}}} \quad \quad M_2 = \frac{\sum_i Ch2_{i,\text{coloc}}}{\sum_i Ch2_{i,\text{total}}}$$

- Sum of intensities of colocalizing pixels in channel 1 or 2, respectively, as compared to the overall sum of pixel intensities above threshold and in this channel.
- Value range 0 – 1 (0: no colocalization, 1: all pixels colocalize)
- Bright pixels contribute more than faint pixels
Correlation coefficient, Pearson’s correlation coefficient

\[R_p = \frac{\sum_{i} (Ch_{1i} - \text{Ch}_{1\text{aver}}) \cdot (Ch_{2i} - \text{Ch}_{2\text{aver}})}{\sqrt{\sum_{i} (Ch_{1i} - \text{Ch}_{1\text{aver}})^2 \cdot \sum_{i} (Ch_{2i} - \text{Ch}_{2\text{aver}})^2}} \]

- Provides information on the intensity distribution within the colocalizing region
- Value range -1 to +1
 - -1,+1: all pixels are found on straight line in the scattergram
 - 0: pixels in scattergram distribute in a cloud with no preferential direction

Overlap coefficient, overlap coefficient after Manders
(Manders, Verbeek and Aten, J. Microscopy 169:375-382, 1993)

\[r = \frac{\sum_{i} Ch_{1i} \cdot Ch_{2i}}{\sqrt{\sum_{i} (Ch_{1i})^2 \cdot \sum_{i} (Ch_{2i})^2}} \]

- Another parameter used to quantify colocalization in image pairs
- Insensitive to differences in signal intensities between the two channels, photo-bleaching or amplifier settings
- Value range 0 – 1 (0: no colocalization, 1: all pixels colocalize)
5.13.20 Display - Profile

This function allows to
- display the intensity distribution of an image along a straight or curved line
- show the intensity values in table form and copy table to clipboard or save as text file
- show separate profiles for each channel in a multi channel image

The settings of Chan, Zoom, Slice, Contr and Palette are applied.

Click on Profile will display the Profile toolbar. Any changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

- Click on the Profile button. The Profile toolbar will be displayed.
 - The intensity curves are shown in a graph below the image(s).
- On the Profile toolbar you can select the width and color of the profile line.

![Image Display window, Profile display](image)

- You can place two markers on the profile line to measure differences in intensities and distances in the XY plane.
• Click on the **Diagr. in Image** button to see an intensity graph superimposed on the image.

![Image Display window, Profile display](image.png)

The **Profile** toolbar contains the following function elements:

- **Arrow** (selection) button: Activates the mouse button for selection, resizing or movement of the profile line in the **Image Display** window.
- **Resize:** Click on handle and hold down the mouse button, move the handle, release mouse button.
- **Movement:** Click on line and hold down the mouse button, move the entire line, release mouse button.

- **Line with arrow** button : (open arrow): Activates the straight profile drawing mode.
 - Click into the image and hold the mouse button, drag a line in any direction and release the mouse button to end the procedure.

- **Open polyline** button: Activates the open polyline drawing mode.
 - The first click into the image sets the starting point, each additional click adds a further line, right mouse click ends the procedure.

- **Open free-shape curve** button: Activates the Bezier figure drawing mode.
 - The first click into the image sets the starting point, each additional click adds a point, right mouse click ends the procedure.
Line button: This button allows you to determine the line thickness of the profile line. It has no influence on the way the intensity profile is generated.

Color selection box: The colors displayed in the **Color** selection box can be assigned to the overlay profile line with a click of the mouse. The currently selected color is displayed in the larger rectangle (top left) of the selection box.

Diagr. In Image button: The profile diagram is displayed in the image along the drawn profile line.

Marker 1 button (red): Activates the red marker for movement in the profile diagram; the marker shown as a red line in the diagram can now be moved to the right or left of the diagram using the mouse. The marker in the image display (red circle) follows accordingly.

Marker 2 button (blue): Activates the blue marker for movement in the profile diagram; the marker shown as a blue line in the diagram can now be moved to the right or left of the diagram using the mouse. The marker in the image display (blue circle) follows accordingly.

Zoom button: Zoom function for profile diagram. Click and drag a rectangle over the area to be enlarged in the profile diagram; the selected area is enlarged on release of the mouse button. The zoom function can be performed several times. A click with the right mouse button will reset the original size.

Reset Zoom button: Resets the zoom factor of the profile diagram to the original size.

Show Table button: The profile diagram is displayed as a table at the bottom of the **Image Display** window.

Copy Table button: The profile table is copied to the clipboard.

Save Table button: The profile table can be stored as a text file (extension *.txt).
5.13.21 Display - 2.5 D

This function allows to
- display the two-dimensional intensity distribution of an image in an pseudo 3D mode
- show the intensity values in profile, grid or filled mode
- show separate distribution for each channel in a multi channel image

- Click on the 2.5 D button.
 - The Pseudo 3D toolbar is displayed.

The settings of Slice apply. The settings of Chan, Zoom, Contr and Palette are not applied.

Click on 2.5 D will display the Pseudo 3D toolbar. Any changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

The viewing plane of the Image Display window can be rotated, tilted either directly with the mouse or by the scroll bars on the right-hand side and the bottom of the Image Display window.

(1) Direct setting in the image
- Click in the image and hold down the mouse button. The perspective is changed by moving the mouse button in horizontal or vertical direction.

(2) Setting via scrollbars
- Move the horizontal scrollbar to rotate the image around the vertical axis. The rotation angle is displayed in the yellow display box.
- Move the left vertical scrollbar to rotate the image around the horizontal axis. The rotation angle is displayed in the yellow display box.

The intensity scale can be varied by the scroll bar on the right-hand side of the Image Display window:
- Moving the right vertical scrollbar enables you to expand or to compress the intensity scale of the image, while the expansion of this intensity axis ranges between 10 % and 100 % of the X-scale size.
The **Pseudo 3D** toolbar contains the following function elements:

- **Profile** button: Profile display (vertical polygon display). Setting of the **Profile Distance** between 1 and 20 using the slider.
- **Grid** button: Grid display (horizontal grid display). Setting of the **Grid Distance** between 1 and 20 using the slider.
- **Filled** button: Color diagram (filled 3D diagram). Selection between the **Mono**, **Rainbow** and **Six Step** color palettes.
- **Channel** list box: Permits the selection of a **Channel** in a multi channel image.
5.13.22 Display - 3D (Image VisArt)

This optional function allows to

- reconstruct and display 3D fluorescence image stacks or time series of frames and stacks from the Image Display window
- select from a variety of reconstruction modes

The settings of Chan are applied. The settings of Zoom, Slice, Contr and Palette are not applied.

Click on 3D will display the 3D toolbar. Any changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

- Click on the 3D button. The 3D toolbar will be displayed.
The 3D toolbar contains the following function elements:

Shadow projection
- **Front** button: Shadow rendering front view
- **Back** button: Shadow rendering back view
- **Any View** button: Shadow rendering with user defined view

Transparency projection
- **Basic** button: Transparency rendering (voxel based)
- **Advanced** button: Transparency rendering (voxel based) with textures

Surface projection
- **Basic** button: Surface rendering (voxel based)
- **Advanced** button: Surface rendering (triangle based)
- **Full Resolution** button: High accurate surface rendering (triangle based)

Appearance button: Opens the render properties dialog

Series button: Renders a series of 3D image stack or 3D / 4D time series, opens the **Series render** dialog
5.13.22.1 Shadow Projection

With a click on Front, the 3D reconstructed image is displayed in a shadow projection where it is illuminated at a 45° angle from the front left.

A click on the Back button creates the same projection with illumination from back left.

The zoom wheel to the left of the Image Display window allows continuous zooming of the 3D reconstructed image.
A click on the **Any View** button displays the 3D reconstruction image in a shadow projection where the viewing point can be defined. In addition to the zoom setting, the image can be rotated around the three orthogonal axes via the relevant setting wheels.

However, the 3D orientation can also be set directly in the Image Display window by clicking, holding and dragging the 3D reconstructed image with the mouse.

The following additional buttons are available in the **Any View** shadow projection mode:

- After activation of the **Frame** button (below the image), a bounding box is drawn around the 3D reconstructed image.

 * Depending on the used mode and hardware configuration, it can take several seconds until the 3D reconstruction is refreshed on the monitor after reorientation.

- A click on the **Coordinate System** button displays a colored coordinate system in the Image Display window, where the X axis is displayed in red color, the Y axis in blue and the Z axis in green.

- A click on the **Scale** button display an X-, Y- and Z-scale in the Image Display window.

- A click on the **Home** button resets the display parameters to the default values.
A click on the **Animation** button activates the animation mode. The object can be pushed by dragging in the **Image Display** window and rotates continuously. Any new push with pressed left mouse button changes the rotation direction and speed of the animation.

The fastest animation results can be achieved with the advanced surface rendering mode (even without additional graphics cards).

5.13.22.2 Transparency Projection

The transparency projection generates a transparent 3D reconstructed image.

The elements for image display (zoom, 3D rotation, home, coordinate system, scale, frame and animation function) are identical to those of the **Any View** function of the shadow projection and are operated in the same way.

The transparency projections **Basic** and **Advanced** are perspective-type 3D reconstructions, with the **Advanced** projection permitting the perspective impression being varied between parallel and centric projection by changing the **View angle**. The **Advanced** projection also offers the possibility of selecting between fast and precise calculation via the **Precise / Fast** slider (at the bottom right in the 3D toolbar). Of course, the precise calculation method is more time consuming.

![Fig. 5-260 Image Display window, 3D display, Transparency projection, Advanced](image-url)
5.13.22.3 Surface Rendering

The surface rendering generates surface rendered 3D reconstructed images.

The elements for image display (zoom, 3D rotation, home, coordinate system, scale, frame and animation function) are identical to those of the transparency projection and are operated in the same way.

The surface projections Basic and Advanced are perspective-type reconstructions of the surface and differ in the fact that the calculation of the 3D information is based on voxels or triangles.

The Advanced projection permits the View angle to be varied in order to enhance the perspective impression. It is also possible to select between fast and precise calculation via the Precise / Fast slider (at the bottom right in the 3D toolbar). Of course, the precise calculation method is more time consuming.

The Full resolution projection is based on a high precision calculation method for 3D information on the basis of triangles with maximum resolution.

Depending on the hardware configuration, it can take several seconds until the surface projection is refreshed on the screen.
5.13.22.4 Appearance (Settings)

The Appearance button opens the 3D Rendering window.

This window allows settings for Light, Material, Background and Projection properties to be defined for all 3D projection modes.

Depending on the selected 3D projection mode, different setting parameters are displayed.

In the Shadow projection, the parameter Roughness is also available and can be set between 0 and 1.

A default setting is permanently available for all modes.

If individual settings for 3D rendering are to be used again, they can be stored and loaded when required.

Proceed as follows to save individual settings:

- Click on the Add to List button.
- Enter a name in the opening Add Shading Model to list window.
- Click on OK.
 - The settings are saved and the entered name appears in the Shading Model List selection box.

- To activate the settings, double-click on the relevant name in the Shading Model List selection box.

Settings which are no longer required can be removed.

- Select the name of the setting to be deleted with a click of the mouse in the selection box and then click on the Remove button.
 - The setting is deleted.
5.13.22.5 Series

The Series button opens the Render Series window. This window allows settings for the axis to be used for rotation of the 3D reconstructed images.

- Click on the Series button to open the Render Series window.
- Select the requested projection mode by clicking on the relevant option button under Mode.
- Depending on the activated mode, directly set the parameters for animation in the Render Series window and the position of the 3D image in the Image Display window (zoom, rotation axes, rendering parameters).
- Click on Apply to start the animation

The animation is performed in a separate Image Display window, which permits the animation to be saved afterwards.

(1) Turn around X and Turn around Y mode

In this mode, the image is turned around the X-axis or the Y-axis exclusively.

The values for Number of Views, Difference Angle and First Angle can be selected accordingly (see section 5.7.2 Projection, page 5-181).
(2) Start and End mode

In this mode, the image is reconstructed between a start position and an end position.

The rotation angles for X, Y and Z and the distance (zoom) can be determined using the sliders.

The value for Number of View can be varied.

(3) Position List mode

In this mode, the image is reconstructed between any required number of interim positions to be determined individually.

The rotation angles for X, Y and Z and the zoom can be determined directly in the image.

Every required interim position is included in the list of the Render Series window with a click on the Add Position button.

Clear List permits the contents of the list to be deleted.

The value for Number of View can be varied.

- Click on the Apply button calculates a spline along all the defined positions from the list and starts an animation along this spline track in space.

(4) Time series

When the input images is a Z Stack time series, the reconstructed images are generated for each time point.
5.13.23 Display - Topo for LSM

This optional function allows to
- process, display and measure topographic information.
- use frame Z Stacks
- and frame Z Stacks over time

The Topo function is mainly used for applications in material research and industry.

The settings of Chan and Zoom are applied. The settings of Slice and Contr are not applied. The Palette settings are applied in some 3D display modes.

Click on Topo will display the Topography toolbar. All changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

- Click on the Topo button. The Topography toolbar is displayed.
 - The topography of a Z Stack is displayed in the Image Display box of the Image Display window. The parameter used at the last exit of the Topo function are applied.

Fig. 5-265 Image Display window, Topography display
The **Topography** toolbar contains the following function elements:

Channels buttons
The selection of a channel to be used.

Generate buttons
The selection of the mode of calculation of the topography image (maximum, center of gravity, first intensity).

Threshold buttons
The selection of thresholds (intensity, height, Auto Z) to be used.

Filter buttons
The definition of filter procedures (geometrical, frequency cut-off filters) for smoothing, separation of roughness or waviness.

Geometry buttons
Automated correction procedures, changes of geometry, tilting.

Display buttons
2D (Intensity, z Map, Gradient); Iso-Lines (z Map, Intensity, Black) 3D (Profiles, Grid, Filled, Shaded).

Measure buttons
Diagrams (Profile, z Distribution, Bearing area ratio plot, Slope distribution); Roughness parameters; Volume parameters.

5.13.23.1 Channel Selection

- Select the channel to be viewed using the relevant button (e.g.: **Ch1**).

5.13.23.2 Generate Topography

The three buttons provided in the **Generate** button bar allow you to generate the topography in different ways:

Maximum
- Click on the **Maximum** button to calculate the topography surface by finding the maximum intensity value. If the optical section with the highest intensity value is found, the intensity values of both neighboring slices are also taken into account, so that a 3 point maximum fit is calculated.

Center
- Click on the **Center** button to calculate the topography surface by using the center of gravity of all summed up intensities of the stack for a given xy print.
This mode provides better result for smooth surfaces of low intensity or nearly transparent surfaces. The receiver gain and offset has to be properly tuned and MarkFirst- MarkLast- positions of the stack should be located approximately in the same distance from the real surface.

First

- Click on the First button to calculate the topography surface by using the first slice coming from the top, where the intensity reaches the value defined by the lower intensity threshold.

This mode provides better result for surfaces of semitransparent materials with inclusions of higher reflectivity or transparent multilayers with subsurface layers of higher signal intensity.

Extended First / Last Mode

1. Definition of an intensity (I) threshold.
2. Starting from top / bottom of a stack to find I = 400.
3. Search of a local maximum one FWHM of actual Z PSF forwards / backwards.
4. Search of the next local maximum one FWHM forwards / backwards from the last max until you have not found any new local maximum.
5. Last local maximum is taken as surface point.

5.13.23.3 Topography Thresholds

Intensity threshold

Click on the Intensity button to calculate the topography surface by using the lower and the upper intensity thresholds for image display. Use of this function is recommended to find the real surface in the case of images with pronounced noise. All image pixels with intensity less or higher than the thresholds set are ignored for the surface calculation.

- Click on the Intensity button to select the intensity thresholds for the surface generation. The Intensity Threshold window appears.
- Set the lower and upper intensity thresholds using the appropriate sliders.
- Click on Close to close the Intensity Threshold window.
Height threshold

Click on the **Height** button to calculate the topography surface by using the lower and the upper height thresholds for image display. Use of this function is recommended to get rid of unwanted peaks and valleys taken into account for parameter calculation. All topographic data with height values less or higher than the thresholds set are ignored for the display and parameter calculation. This threshold applies both for 2D as well as for 3D topography display modes.

- Click on the **Height** button to select the intensity thresholds for the surface generation. The **Z Threshold** window appears.
- Set the lower and upper intensity thresholds using the appropriate sliders.
- Click on **Close** to close the **Z Threshold** window.

Auto Z

By clicking on the **Auto Z** button the surface topography is displayed in the **Image Display** window in that way that it is automatically normalized to the lowest and highest Z value of the 3D topography.

- Click on the **Auto Z** button. The topography is automatically normalized with respect to the highest and lowest Z value.

5.13.23.4 Processing by Filtering

(1) Topography smoothing

The three buttons in the **Filter** button bar allow activation / deactivation of the filter functions for surface smoothing.

- **None** button
 - No filter for input data.

- **Median / Gauss / Aver.** button
 - Smoothing of z data using a low-pass Median, Gauss or average filter. Clicking on this button opens a selection box, where the number of neighboring pixels to be used for filtering can be specified:
 - **1st row**: small smoothing via Median/Gauss filter (Median; 3 x 3; 5 x 5; 7 x 7)
 - **2nd row**: medium smoothing via Average (9 x 9; 11 x 11; 15 x 15)
 - **3rd row**: pronounced smoothing via Average (25 x 25; 35 x 35; 45 x 45)
• To investigate the effects of various filter modes, select one of the 3D display modes (Profiles, Grid, Filled or Shaded) from the Display button bar.

• Click on the Median sub button to set the smoothing of the integrated Median filter.

Or

• Click on a Gauss or Average sub button and select the required degree of smoothing from the selection box with a click of the mouse.

FFT button: This function performs a Fast Fourier Transformation (FFT) in the frequency range, applies highpass or lowpass filtering in the frequency range and performs the inverse FFT.

• Click on the FFT button, the FFT Filter window opens.

• Click on the arrow in the filter Type select box to choose an adequate filter function:
 – Gauss Lowpass
 – Gauss Highpass
 – Butterworth Lowpass
 – Butterworth Highpass

• Select a position of the Cut off slider to display either the lower frequencies (waviness) with the lowpass filters or the higher frequencies (roughness) with the highpass filters.

• The Cut off frequencies ranges from 1/1000 of the X dimension of the stack to four times of the X dimension of the stack. The dimensions of the filtering is given in units of µm.

• Select a position of the Degree slider. The filter functions can be calculated from 1st order to 5th order accuracy.

• Click on the Close button closes the FFT Filter window.
(2) Changing the topography geometry

The three buttons in the Geometry button bar allow the surface geometry to be changed.

Inverse button

Inverse surface. Depths change to heights, and vice versa.

Fit button

The following fit modes can be set:

1) **No Fit**
2) **Plane**

The topography is tilted in such a way that the mean deviation value plane is calculated.

3) **Cylinder fit correction**

A cylinder form is eliminated, determination of micro roughness on cylindrical surfaces can be performed.

4) **Sphere fit correction**

A spherical form is eliminated, determination of micro roughness on spherical surfaces can be performed.

If Cylinder / Sphere fit is chosen, the Manu Tilt button is disabled.

You can display the exact values of the Cylinder / Sphere fit by opening a context menu in the Image Display box with a click of the right mouse button and selecting the Show processing parameter function.

Manu Tilt button

Manual tilt correction.

Clicking on the Manu Tilt button activates the function (enabled). The sliders for manual tilt correction are displayed on the right and below the Image Display box. Vary the tilt by adjusting the horizontal and vertical sliders or the arrows. The tilting angle is varied in steps of 1 degree. By additional pressing of the Ctrl key, the tilting angle can be varied in steps of 0.1 degrees. A yellow box showing the tilt angle currently set is displayed next to each slider for checking purposes. A second click on the Manu Tilt button ends this function and saves the setting (save and disabled). The sliders for tilt correction disappear from the display.

You can also change the tilt angle directly in the Image Display box. Click the left mouse button in the image and hold it down. Moving the mouse pointer in horizontal or vertical direction tilts the topography by an axis parallel or vertical to the screen. On releasing the mouse button, the change of the tilt is stored and the function is deactivated (disabled).

To reset the manual tilt correction, click the Fit button.

- Click on the Inverse button for the inverse display of the topography. Clicking again will reset the normal display.
- Correct the tilt via the Fit or Manu Tilt functions.
5.13.23.5 Display Modes

The three buttons in the Display button bar allow stacks to be displayed in the 2D, Iso-Lines or 3D display mode.

(1) 2D modes

The following 2D modes can be set:

- **Intensity** button: Display of projection of all intensities of the stack (black-and-white display).
- **z Map** button: Height coded color map with color bar.
- **Gradient** button: Display of height gradient (slope), averaged pixelwise over all neighbors (black-and-white display).

- Click on the 2D button in the Display button bar.
 - The 2D display mode selected last is activated. At the same time, an additional button bar is displayed beside the 2D button permitting selection of the required 2D display mode.
- Select the required 2D display mode with a click of the mouse.

(2) 2D Iso-Lines display mode

Iso-Lines are lines which connect points of equal height on the topography.

The following 2D Iso-Lines display modes can be set:

- **Intensity** button: **Intensity** projection superimposed with colored iso-lines (lines of equal height).
- **z Map** button: **z Map** function with black iso-lines.
- **Black** button: White iso-lines on a black background.
• Click on the Iso-Lines button in the Display button bar.
 - The Iso-Lines display mode selected last is activated. At the same time, an additional button bar is displayed beside the Iso-Lines button permitting selection of the required Iso-Lines display mode.
 - Below the Measure button bar, the Line Dist. and Line Offset sliders / input boxes are displayed.
• Select the required Iso-Line display mode by clicking the left mouse button.

The additional function elements of the Iso-Lines display mode have the following meaning:

- Line Dist. slider: Changes the distance of the iso-lines.
- Line Offset slider: Setting of the height level where the Iso-Lines display starts.

To apply the topography functions to a small portion of the Z Stack image use the Overlay function (Overlay button) and cut out and store as new topographic evaluation via the Extract Region function.

(3) 3D display
Topo animations are possible. The following 3D modes can be set:

- Profiles button: Profile display.
- Grid button: Grid display.
- Filled button: Display of color shades.
- Shaded button: Surface rendering. Can be combined with LUT. Topo animations are possible.

• Click on the 3D button in the Display button bar.
 - The 3D display mode selected last is activated. At the same time, an additional button bar appears beside the 3D button to permit selection of the required 3D display mode.
 - Below the Measure button bar, the Scaling button bar and the Profile Dist. and Fill Level sliders / input boxes are displayed.
 - The Image Display box contains one horizontal and two vertical scrollbars for the setting of the image viewing angle.
• Select the required 3D display mode with a click of the mouse.
The additional function elements of the 3D display mode have the following meaning:

Profile Dist. slider: Setting of the distance of profiles and the mesh value of the grid.

Fill Level slider: Used to push through a color LUT Look Up Table (e.g.: if the Rainbow palette is used) in the Profiles / Filled display mode. In combination with the Volume button, the filling of the flood function level of the topography can be varied for volume measurements (see the Measurement functions paragraph).

Fill Holes procedure
- Intensity of a missing pixel of a hole has to be interpolated by the distance-weighted intensity of all surrounding pixels.
- Fill hole algorithm is optimized for short calculation times.

The image viewing angle is set as follows:

Setting directly in the image
- Click in the image and hold down the mouse button. The perspective is changed by moving the mouse button in horizontal or vertical direction.

Setting via scrollbars
- Move the horizontal scrollbar to rotate the image around the vertical axis. The rotation angle is displayed in the yellow display box.
- Move the left vertical scrollbar to rotate the image around the horizontal axis. The rotation angle is displayed in the yellow display box.
- Moving the right vertical scrollbar enables you to expand the image in height or to compress it, while the Z-range between 10 % and 100 % of the X-range is scaled.

You can set the x, y and Z scales to an identical ratio by opening a context menu in the Image Display box with a click of the right mouse button and selecting the Metric equal ratio function.

The displayed boxes for rotation angle and relative scaling percentage value z : x ratio permit the setting of identical perspectives for different images (e.g.: the plot of several topographies).

The Profiles and Filled 3D display modes permit a color palette (e.g.: Glowscale, Rainbow or User defined) to be loaded or redefined by pressing the Palette button (see page 5-256).
5.13.23.6 Context Menu of the 3D Display Mode

- Click in the Image Display box with the right mouse button to open the context menu. The context menu for the 3D mode currently selected is displayed.
- Click on the required option with the left mouse button to execute the function.

1) Metric equal ratio item
This option is available in all of the 3D display modes.
After activation of the function, the x, y and z scales are set to an identical ratio.

2) Export ... item
This option is available in the Profiles and Grid 3D display modes.
Use the function to save the Profiles or Grid data as a text file.
- Open the context menu with a click of the right mouse button, then click on the option Export ... with the left mouse button.
 - The Save As window is opened.
- Select the directory where you want the text file to be stored, enter a file name and click on Save.
A text file containing the topography in the form of an XYZ matrix is generated.
(3) **Copy ... to clipboard item**

This option is available in the **Profiles** and **Grid** 3D display modes. After selection of this option, the **Profiles** or **Grid** data are copied as an XYZ matrix to the clipboard and can be inserted in other programs using the **Paste** command.

(4) **Export x,y,z- triples item**

This option is available in the **Profiles** and **Grid** 3D display modes.

Use the function to save the **Profiles** or **Grid** data as a text file.

- Open the context menu with a click of the right mouse button, then click on the option **Export ...** with the left mouse button.
 - The **Save As** window is opened.
- Select the directory where you want the text file to be stored, enter a file name and click on **Save**. A text file containing the topography in the form of an XYZ table is generated.
(5) **Copy x,y,z- triples to clipboard item**

This option is available in the Profiles and Grid 3D display modes. After selection of this option, the Profiles or Grid data are copied as an XYZ table to the clipboard and can be inserted in other programs using the Paste command.

Please make sure that the amount of exportable data is adequate to the maximum importing size of the following software package. To lower the amount of data points, use the profile distance slider.

(6) **Render properties item**

This option is only available in the Shaded 3D display mode. Use this function to vary the illumination conditions, reflection properties and projection settings of the topography. You can either select preset Shading Models or use parameters specifically defined as required.

The specifically defined parameters can subsequently be stored as a Shading Model and are then available at any time for further use. Shading Models can also be deleted if no longer needed.

Load a Shading Model

- Open the context menu with a click of the right mouse button, then click on the option Render properties with the left mouse button.
 - The 3D Rendering window is opened.
- Click on the name of the required model in the Shading Model List. The parameters are immediately set for the current topography.
- Click on Close to close the 3D Rendering window again.
Defining a specific Shading Model

- Open the **3D Rendering** window.
- Click on the **Define** button.
- Change the parameters of the topography using the appropriate sliders.
- Save the settings by clicking on the **Add to List** button. The **Add Shading Model to List** window is displayed.
- Enter a name for the model and click on **OK**. The model is included in the **Shading Model List**.

Light panel
Determine the properties of illumination on a sample.
- **Distance** Goes for diffuse and **specular**, see visualization.
- **Azimuth** See visualization. Rise angle of the "sun".
- **Elongation** See visualization. North-south / east-west direction of the "sun".
- **Background** Choose background color.

Material panel
Determine the reflective properties of a sample.
- **Ambient** Material properties; how many % of the light component are projected by the material into which spectral ranges.
- **Specular** Goes together with specular light. Shininess equal to 25 % determines diffuse light.
- **Shininess**
Projection panel
Determines the reflective properties of a sample.

View angle
Determines the perspective, 0.0 parallel projection, central projection.

Distance
Zoom function, zoom in, zoom out.

A zoomed rendering setting permits the zoomed section to be moved via the cursor keys after a click on the 3D window.
If a change of the 3D image angle follows, centration is made on the center again.

Deleting a Shading Model
- Select the model to be deleted in the Shading Model List, then click on the Remove button. The model is deleted.
(7) **Renderer item**

This option is only available in the **Shaded 3D** display mode.

After selection of the **Renderer** item, the **3D Renderer** window appears. It allows the selection of the hardware and software option which shall be used for the 3D graphics calculation.

OpenGl - Software

The graphics calculation is performed using the installed software.

OpenGl - Hardware

The graphics calculation is accelerated by using the installed graphics processor.

Direct3D – Software / Hardware Rasterizer / Hardware

These options can be used for offline versions of the LSM 5 software for PC's with the WINDOWS 98 or 2000 operating system (not for WINDOWS NT).

![3D Renderer window](image-url)
(8) **Show processing parameters**

After selection of the **Show processing parameters** function, a reporting of the following applied topo processing functionality is displayed on the right-hand side of the **Image Display** window:

- Mode (calculation mode: Max, Center, First)
- Threshold (applied intensity threshold)
- Filter
- Fit (plane, cylinder / sphere parameters).

![Fig. 5-278 Show processing parameters](image-url)
5.13.23.7 Measurement Functions

The topography measurement functions are activated via the Measure button bar. The measurement functions can be performed in the 2D or 3D display mode.

Automated convention in height statistics analysis:

<table>
<thead>
<tr>
<th>Topo Filters</th>
<th>None, median, <9x9</th>
<th>FFT High</th>
<th>FFT Low</th>
<th>>9x9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data formats</td>
<td>Primary profile</td>
<td>Roughness</td>
<td>Waviness</td>
<td></td>
</tr>
<tr>
<td>2D profile</td>
<td>Pxx</td>
<td>Rxx</td>
<td>Wxx</td>
<td>n.a.</td>
</tr>
<tr>
<td>3D topography</td>
<td>SPxx</td>
<td>SRxx</td>
<td>SWxx</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

The following measurement functions are available:

Diagram button: Diagram display. The Profile, z Histo, Curve of tp and Grad. Histo diagram display modes can be activated via the Diagram button and deactivated via the Off Diagram button. By activation of the Diagram button, an additional button bar is displayed for the selection of the required diagram or for deactivation. The labeling of the Diagram button changes depending on which diagram display mode has been activated.

Roughness button: Calculation of the roughness parameters.

Volume button: Calculation of the volume parameters.
(1) **Profile measurement mode in 2D display**

- Select the required 2D display of the stack via the 2D button.
- Click on the **Diagram** button in the **Measure** button bar. Click on the **Profile** button in the button bar displayed afterwards.
 - The **Table** and **Profile** button bars are displayed below the **Measure** button bar.
 - A colored arrow (intersection line of the profile) is displayed in the image and the profile diagram appears below the image.
- If required, match the size of the **Image Display** window in order to obtain the complete display of the profile diagram.

![Image Display window, Topography display: 2D - Profile](image.png)
The additional **Table / Profile** buttons have the following functions:

- **Show** button: The profile is displayed in the form of a table at the bottom below of the **Image Display** window.
- **Copy** button: The profile table is copied to the clipboard and can be transferred to other programs (MS Word or MS Excel) via the **Paste** function.
- **Save** button: The profile table can be stored as a text file (ASCII).
- **Arrow** (selection) button: Activation of the mouse button for selection, resizing or movement of the intersection line in the image.
 - **Resizing:** Click on the handle and hold down the mouse button, drag the handle, release the mouse button.
 - **Movement:** Click on the line and hold down the mouse button, move the entire intersection line, release the mouse button.
- **Line with arrow** button (open arrow): Creation of the intersection line to define the position of the profile to be produced in the image. Click and hold the mouse button, drag the line in any required direction, release the mouse button to end the procedure. The profile diagram changes online.
- **Line** button: This button allows you to determine the line thickness of the intersection line.
- **Measure** button: Activates the **Profile measurement mode** in the profile diagram. The required tools are displayed to the right of the profile diagram (see **Profile measurement mode**, page 5-320).
- **z/x=1** button: Sets the \(z/x\) ratio in the profile diagram to the value 1. Check: the following creation of a circle using the relevant tool really results in a circle in the profile display. Measured angle values correspond to the actual slope of the line displayed.
- **Color** button: Clicking on the **Color** button opens a color selection box in which the color for the intersection line can be selected with a click of the mouse.
Profile measurement mode

If you click on the button, the Profile window with the tools of the profile measurement mode appears.

This window can be moved as required over the entire screen.

The tools of the Profile measurement mode have the following functions:

Zoom button: Zooming of a section of the profile diagram. Click and drag a rectangle over the area to be enlarged in the profile diagram, release the mouse button to enlarge the selected area. The zoom function can be performed several times. A click with the right mouse button resizes the profile.

Marker button: Activation of the marker functions for the intersection line. The red and blue marker lines in the profile diagram can now be moved using the mouse. After movement of a marker line in the profile diagram, the relevant marker (red or blue circle) follows along the intersection line in the 2D and Iso-Lines mode.

Arrow (selection) button: Activation of the mouse button for selection, resizing or movement of one of the following drawing elements in the profile diagram.
- **Resizing:** Click on the handle and hold down the mouse button, move the handle, release the mouse button.
- **Movement:** Click on the line and hold down the mouse button, move the entire drawing element, release the mouse button.

Inclined Line button: Creation of a straight line in the profile diagram. Display of distance, inclination angle, dx, dy and dz. Click and hold down the mouse button, drag the line in any required direction, release the mouse button to end the procedure.

Free angle button: Creation of a free angle in the profile diagram. Display of the enclosed angle (max. 180 °). The first click sets the starting point, the second and third clicks define the angle and the end point.

Rectangle button: Creation of a rectangle in the profile diagram. Display of distance, area, height and width. Click and hold down the mouse button, drag the rectangle in any required direction, release the mouse button to end the procedure.
Open Polyline button: Creation of an open polyline figure in the profile diagram. Display of the length of the line figure. First click sets the starting point, any further click adds another line, click with the right mouse button ends the procedure.

Closed Polyline button: Creation of a closed polyline figure in the profile diagram. Display of the perimeter of the figure. First click sets the starting point, each further click adds another line, a click with the right mouse button closes the figure and ends the procedure.

Open free-hand curve button: Creation of an open Bezier figure in the profile diagram. Display of the length of the line figure. First click sets the starting point, each further click adds another line, a click with the right mouse button ends the procedure.

Closed free-hand curve button: Creation of a closed Bezier figure in the profile diagram. Display of the length of the line figure. First click sets the starting point, each further click adds another line, a click with the right mouse button closes the figure and ends the procedure.

Ellipse button: Creation of an ellipse in the profile diagram. Display of the area. First click sets the center point, the displayed line permits the determination of the first dimension, second click sets the first dimension, the second dimension and rotation direction can now be determined, third click sets the second dimension and direction and ends the procedure.

Circle button: Creation of a circle in the profile diagram. Display of radius and area. Clicking three times to define 3 points on the profile. A circle fit is automatically applied on the profile.

Recycle bin button: Deletes all drawing elements or the one just selected.

Line width button: Change of the line width of the drawing elements.

Color button: Clicking on the **Color** button opens a color selection box where the color of the drawing element can be selected with a click of the mouse.

x1- button: Resets the zoom factor of the profile diagram to its original size.
(2) **z Histo measurement mode in 2D display**

- Click on the **Diagram** button in the **Measure** button bar. Click on the **z Histo** button in the additional button bar now displayed.

The lower part of the **Image Display** box shows the 3D height distribution of the topography.

![Image Display window, Topography display: 2D - Histo](image)

Fig. 5-281 Image Display window, Topography display: 2D - Histo
(3) Curve of tp measurement mode in 2D display

- Click on the **Diagram** button in the **Measure** button bar. Click on the **Curve of tp** button in the additional button bar now displayed.
 - The curve of the bearing area ratio as a function of the height is displayed below the image (also see 3D measurement functions, page 5-329).

(4) Grad. Histo measurement mode in 2D display

- Click on the **Diagram** button in the **Measure** button bar. Click on the **Grad. Histo** button in the additional button bar now displayed.

The lower part of the **Image Display** box shows the gradient distribution of the topography. Before creation of the slope diagram, the image should be filtered at least once using a low-pass filter, since otherwise the rough height gradation of the image will result in a comb-shaped histogram. The Root-Mean-Square Slope (RMS Slope) parameter is calculated and displayed below the chart. The following formula is used for calculation:

\[
R_{DQ} = \sqrt{\frac{1}{(N_x - 1) \cdot (N_y - 1)} \cdot \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} \left[\frac{z(x_i, y_j) - z(x_{i-1}, y_j)}{\Delta x} \right]^2 + \left[\frac{z(x_i, y_j) - z(x_i, y_{j-1})}{\Delta y} \right]^2}
\]

(5) Roughness measurement mode in 2D display (Profile display)

2D Amplitude parameters (Profile Roughness):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Symbol</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean height z</td>
<td>z</td>
<td>Rc</td>
<td>Pc</td>
</tr>
<tr>
<td>Dispersion</td>
<td>Ra</td>
<td>Pa</td>
<td>Wa</td>
</tr>
<tr>
<td>Root mean square deviation</td>
<td>Rq</td>
<td>Pq</td>
<td>Wq</td>
</tr>
<tr>
<td>Asymmetry</td>
<td>Rsk</td>
<td>PsK</td>
<td>Wsk</td>
</tr>
<tr>
<td>Sharpness</td>
<td>Rku</td>
<td>Pku</td>
<td>Wku</td>
</tr>
<tr>
<td>Extremes</td>
<td>Rp</td>
<td>Pp</td>
<td>Wp</td>
</tr>
<tr>
<td>Lowest valley</td>
<td>Rv</td>
<td>Pv</td>
<td>Wv</td>
</tr>
<tr>
<td>Absolute peak to valley</td>
<td>Rt</td>
<td>Pt</td>
<td>Wt</td>
</tr>
<tr>
<td>Averaged peak to valley</td>
<td>Rz</td>
<td>Pz</td>
<td>Wz</td>
</tr>
<tr>
<td>Maximum peak to valley</td>
<td>Rmax</td>
<td>Pmax</td>
<td>Wmax</td>
</tr>
<tr>
<td>If chosen filters are</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FFT High</td>
<td>No, M</td>
<td>FFT L</td>
<td></td>
</tr>
</tbody>
</table>

- Click on the **Profile** button in the **Measure** button bar.
• Click on the **Roughn.** button in the **Measure** button bar.

 - The roughness parameters are calculated and displayed on the left below the image. All roughness parameters calculated from a 2D profile are named with **R**.

 - The **Copy** button is displayed below the right-hand side of the image. This button permits the roughness parameters to be copied to the clipboard and imported to another program (e.g.: MS Word or MS Excel) via the **Paste** function.

The following roughness parameters are calculated (e.g. for a Y-section)

- Mean height of all profile height values \(R_c \)

\[
R_c = \frac{1}{N_y} \sum_{j=1}^{N_y} z(x, y_j)
\]

\(N_x, N_y \) ... number of pixels in X- or Y-direction

- Arithmetic mean deviation of all profile height values \(R_a \)

\[
R_a = \frac{1}{N_y} \sum_{j=1}^{N_y} [z(x, y_j) - R_c]
\]

- Quadratic mean deviation of all profile height values \(R_q \)

\[
R_q = \sqrt{\frac{1}{N_y} \sum_{j=1}^{N_y} [z(x, y_j) - R_c]^2}
\]

- Skewness of the distribution of all profile height values \(R_{SK} \)

\[
R_{SK} = \frac{1}{N_y \cdot R_q^3} \sum_{j=1}^{N_y} z^3(x, y_j)
\]

- Kurtosis of the distribution of all profile height values \(R_{KU} \)

\[
R_{KU} = \frac{1}{N_y \cdot R_q^4} \sum_{j=1}^{N_y} z^4(x, y_j)
\]

- Maximum peak height \(R_p \)

\[
R_p = z_{\text{max}} - R_c
\]

- Maximum valley depth \(R_v \)

\[
R_v = R_c - z_{\text{min}}
\]
- Maximum roughness depth R_t (= Peak to Valley / PV)
 \[- R_t = z_{\text{max}} - z_{\text{min}}\]
 maximum height difference of the overall topography along a profile.

Classification of topography in 5 equal area elements (rectangles in the 2D mode)

- average roughness depth R_z:
 \[- R_z = \frac{z_{\text{max} 1} - z_{\text{min} 1} + z_{\text{max} 2} - z_{\text{min} 2} + z_{\text{max} 3} - z_{\text{min} 3} + z_{\text{max} 4} - z_{\text{min} 4} + z_{\text{max} 5} - z_{\text{min} 5}}{5}\]
 Averaging of R_t-values of all the 5 single area elements. When combined, both parameters provide information about the homogeneity of the surface. Big differences are indicative of pronounced inclination of the overall area or of spikes.

Developed Surface Area Ratio: Σ (surface area) / Σ (projected area)
The percentage of the 3D surface area (sum off all triangles formed by adjacent data points) to the 2D surface area produced by projecting the 3D surface onto the threshold plane.

- maximum roughness depth R_{max}:
 \[- R_{\text{max}} = \text{Max} (z_{\text{max} 1} - z_{\text{min} 1}, z_{\text{max} 2} - z_{\text{min} 2}, z_{\text{max} 3} - z_{\text{min} 3}, z_{\text{max} 4} - z_{\text{min} 4}, z_{\text{max} 5} - z_{\text{min} 5})\]
 maximum of R_t-values of all the 25 single area elements.

Both the roughness parameters and the z-histogram can be changed by using filters!
(6) Roughness measurement mode in 3D display

3D Amplitude parameters (Topography Roughness):

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean height z</td>
<td>z</td>
<td>$\frac{1}{N_x \cdot N_y} \cdot \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} - z(x_i, y_j)$</td>
</tr>
<tr>
<td>Arithmetic mean deviation</td>
<td>a</td>
<td>$\frac{1}{N_x \cdot N_y} \cdot \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} [z(x_i, y_j) - S_c]$</td>
</tr>
</tbody>
</table>

- Click on the **Roughn.** button in the **Measure** button bar.
- The roughness parameters are calculated and displayed on the left below the image. All roughness parameters calculated from a 3D topography are named with S.
- The **Copy** button is displayed below the right-hand side of the image. This button permits the roughness parameters to be copied to the clipboard and imported to another program (e.g.: MS Word or MS Excel) via the **Paste** function.

The following roughness parameters are calculated:

- Mean height of all surface height values S_c

$$S_c = \frac{1}{N_x \cdot N_y} \cdot \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} - z(x_i, y_j)$$

- Arithmetic mean deviation of all surface height values S_a

$$S_a = \frac{1}{N_x \cdot N_y} \cdot \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} [z(x_i, y_j) - S_c]$$
- Quadratic mean deviation of all surface height values S_q

$$
S_q = \sqrt{\frac{1}{N_x \cdot N_y} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} [z(x_i, y_j) - S_c]^2}
$$

- Skewness of the distribution of all surface height values S_{sk}

$$
S_{sk} = \frac{1}{N_x \cdot N_y \cdot S_q^3} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} z^3(x_i, y_j)
$$

- Kurtosis of the distribution of all surface height values S_{ku}

$$
S_{ku} = \frac{1}{N_x \cdot N_y \cdot S_q^4} \sum_{i=1}^{N_x} \sum_{j=1}^{N_y} z^4(x_i, y_j)
$$

- Maximum peak height S_p

$$
S_p = z_{max} - S_c
$$

- Maximum valley depth S_v

$$
S_v = S_c - z_{min}
$$

- Maximum roughness depth S_r (= Peak to Valley / PV)

$$
S_r = z_{max} - z_{min}
$$

maximum height difference of the overall topography.
Classification of topography in 25 equal area elements (rectangles in the 2D mode)

- average roughness depth S_z:
 $$ S_z = \frac{z_{\text{max}1} - z_{\text{min}1} + z_{\text{max}2} - z_{\text{min}2} + \cdots + z_{\text{max}25} - z_{\text{min}25}}{25} $$
 Averaging of R_t-values of all the 25 single area elements. When combined, both parameters provide information about the homogeneity of the surface. Big differences are indicative of pronounced inclination of the overall area or of spikes.

- maximum roughness depth S_{max}:
 $$ S_{\text{max}} = \text{Max} \left(z_{\text{max}1} - z_{\text{min}1}, z_{\text{max}2} - z_{\text{min}2}, \cdots, z_{\text{max}25} - z_{\text{min}25} \right) $$
 maximum of R_t-values of all the 25 single area elements.

Both the roughness parameters and the z-histogram will be influenced by the use of filters!
5.13.23.8 3D Measurement Functions

(1) Volume measurement mode (Flood function)

- Use the 3D button to select the required 3D display of the stack.
- Click on the **Volume** button in the **Measure** button bar.
 - The volume parameters are calculated and displayed below the image.
 - The **Copy** button is displayed below the right-hand side of the image. This button permits the volume values to be copied to the clipboard and imported to other programs (e.g.: MS Word or MS Excel) via the **Paste** function.

- Setting the **Fill Level** slider enables you to change the height level of the topography. The portion of the topography lying below the set height level is filled with "water" (blue color) and the volume parameters are calculated online only for the projecting part of the topography.

To use the **Fill Level** function, load the **Profiles** 3D display mode containing the **Glowscale** palette, or activate **No Palette** to obtain optimum display.

- If the **Diagram** function **Curve of tp** is also activated, a red marker line shows the position of the height level in the percentage of contact area curve.

![Fig. 5-282 Image Display window, Topography display: 3D - Volume](image-url)
The following parameters are calculated:

Z: height level (selectable with the **Z-Threshold** and **Fill Level** sliders). The setting of this value influences the following parameters.

Vm (z): material volume above chosen height level

Vv (z): void volume below chosen height level

Smr (z): material volume ratio

\[S_{mr}(z) = \frac{V_m(z)}{V_m(z_{min})} \]

Svr (z): void volume ratio

\[S_{vr}(z) = \frac{V_v(z)}{V_v(z_{max})} \]

Au: surface bearing area of the topography at Z (= projection area of those parts which are situated above chosen height level)

Smr: surface bearing area ratio of the topography at Z

percentage of contact area (= Au / (x * y) * 100 %)

Sda: true surface = sum of all triangles formed by adjacent data points of the surface reconstruction

Sdr: developed surface area ratio:

\[\frac{\Sigma (surface area) - \Sigma (projected area)}{\Sigma (projected area)} * 100 \%
\]

projected area = x * y

The percentage of the 3D surface area (sum of all triangles formed by adjacent data points of the surface reconstruction) to the 2D surface area produced by projecting the 3D surface onto the threshold plane.

absolute flat surface \(\Rightarrow\) is equal to base plane \(Sdr = 0 \%\)

The increase by which the 3D surface is larger than the basic plane (e.g. 625 % is a 3D surface which is about 6.25 times larger than the projected basic plane)
(2) Profile measurement mode in 3D display
This function is performed in the same way as in the 2D display mode, with the following exceptions:

The buttons [left] and [right] are replaced with the buttons [up] and [down]. Furthermore, the Position slider and the input box (information of the position of the intersection line in pixels) are displayed below the Table and Profile button bar. Changing the Z-Threshold also results in a change in the profile. In the 3D image, a red marker line shows the y- and x-position of the displayed profile diagram.

- The position of the marker line (profile intersection line) can be changed by moving the Position slider in x or y.
- Press the x- or y-button to select the required intersection plane.

(3) z Histo measurement mode in 3D display
This function is performed in the same way as in the 2D display mode.
(4) Curve of tp measurement mode in 3D display

This function is performed in the same way as in the 2D display mode. Before determination of the tp bearing portion, individual peaks (noise, steep slopes) must be eliminated. The Median filter and perhaps a 3x3 longpass filter can be used for this purpose.

![Image Display window, Topography display: 3D – Curve of tp](image)

Shifting the two cursor crosses permits two bearing portions to be given in percent (e.g. Smr1 = 10 %; Smr2 = 90 %) as default values for which the height difference Rd is determined automatically.

(5) Grad. Histo measurement mode in 3D display

This function is performed in the same way as in the 2D display mode.

(6) Roughness measurement mode in 3D display

This function is performed in the same way as in the 2D display mode.
5.13.23.9 Export data

- multiple profiles (Rel. 3.2)
- single profile
- parameters
- topography as matrix
- topography as triples

5.13.23.10 Topo ReUse

Topo routines can be saved and reloaded as tgp-files (TopoGraphic Parameters). These files include settings for:
- reconstruction mode,
- intensity threshold,
- filters (including FFT),
- tilt angles (manual, 3 point fit),
- fit procedures (plane, cylinder, sphere),
- inverse and
- fill holes.

This function allows to
- compose images, graphs and text for printing
- use any image format
- change fonts and line width in graphs via context sensitive menus

The settings of Chan, Zoom, Slice, Contr and Palette apply.

In the Options menu in the function Settings with the tab Print Status Display parameters are determined and the Print Status Information is activated/deactivated.

Click on Prev will display the Preview window and the Print toolbar. Any changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

(1) Context menu for scan information text

The context menu (right mouse button) allows to vary the output of the scan info.

- Click with the right mouse button. A context menu with the options Color and Font is displayed.
- In the Color menu, you can select a different type color for the scan info, in the Font menu a different type font and type style.
(2) Context menu for Topography Images

When transferring a topography to the print preview, you can change the size and shape of type and scale lines for the 3D graphics and profile measurement results.

(a) Context menu for 3D graphics

- Click on the right mouse button. A context menu with the options **Font enlargement** and **Line width enlargement** is displayed.
- You can change the type size in the **Font enlargement** menu and the line width of the scales in the **Line width enlargement** menu.

(b) Context menu for Profile measurement function

- Click on the right mouse button. A context menu with the options **Scaling font enlargement**, **Marker font enlargement** and **Overlay font enlargement** is displayed.
- You can change the type font in the **Scaling font enlargement** menu, the size of the marker table in the **Marker font enlargement** menu and the type size of the red measurement results in the **Overlay font enlargement** menu.

(3) Arranging and printing the Print Preview

- Click on the **Arrange** button for optimum layout of image size and position relative to the textual information.
- A layout generated with **Prev.** (Preview) can be printed by clicking on the **Print** button in the Print toolbar.
- Clicking on the **Setup** button opens the **Print Setup** window, in which you can specify print parameters.
- Click on the slider to change the zoom value of the selected items.

![Print Setup window](image) Fig. 5-286 Print Setup window
5.13.25 Display - Info

This function allows to

- display the parameters used during image acquisition of the image(s) displayed in the Image Display window
- use any image format
- remove the info display

The settings of Chan, Zoom, Slice, Contr and Palette are not relevant for this function.

In the Options menu in the function Settings with the tab Image Status Display parameters to shown are determined.

Click on Info will show the parameters. Click again to hide the info display.

![Image Display window, Info display](image)
5.13.26 Additional Display Mode in Time Series

5.13.26.1 Display - Mean

This function allows to
- display the intensity time diagram (mean intensity in user defined ROIs over time)
- use frame time series and frame Z Stack time series as input
- show the intensity values in table form and copy table to clipboard or save as text file
- show separate diagrams for each channel in a multi channel image

The settings of Chan, Zoom, Slice, Contr and Palette apply.

Click on Mean will display the Mean of ROIs toolbar. Any changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

To use a similar functionality while scanning use the optional Mean of ROI function with the Time series control.

- Click on the Mean ROI button.
 - The Mean of ROIs image display toolbar will be displayed on the right. The used ROIs become visible in the image, and the Intensity-Time diagram is shown on the left of the Image Display window.

![Image Display window, Mean ROI display](image_url)
The **Mean of ROIs** toolbar contains the following function elements:

ROIs selection box: Display of the ROIs used during scanning of the time series and of the other ROIs available in the system.

Add button: Opens the **Add ROI List** window for the storage of changed or newly defined ROIs under a new name.

Remove button: Deletes the selected ROI from the ROIs selection box.

ROI data: Display of the data of the ROI selected from the ROIs selection box. On deactivation of the check box of a ROI, its intensity values from the Intensity-Time diagram are not displayed.

Arrow button: Activation of the mouse button for resizing or movement of the ROI in the **Image Display** window.

Bezier button: Activates the Bezier figure drawing mode. The first click sets the starting point, each additional click adds a further line, a double-click on the starting point closes the figure and ends the procedure.

Circle button: Activates the circle drawing mode. Clicking and holding down the mouse button sets the center point; drag the diameter and release the mouse button to end the procedure.

Recycle bin button: All the ROIs to the image are deleted.

Rectangle button: Activates the rectangle drawing mode. Click and hold down the mouse button, drag the rectangle in any direction, release the mouse button to end the procedure.
Ellipse button: Activates the ellipse drawing mode. The first click sets the center point, the displayed line permits the determination of the first dimension, the second click sets the first dimension, the second dimension and the rotation direction can then be determined; the third click sets the second dimension and the direction and ends the procedure.

Polyline button: Activates polyline drawing mode. The first click sets the starting point, each additional click adds a further line, a double-click on the starting point closes the figure and ends the procedure.

Line button: This button allows you to determine the line thickness of the ROI outline.

Color / Auto button: One color from the list of colors can be assigned to all ROIs. When **Auto** is pressed, the outlines of all ROIs are automatically colored differently.

Buttons for diagram display:

1 button: Intensity values for ROIs and channels are shown in one diagram.

Chan button: Intensity values are shown separately for each channel.

ROI button: Intensity values are shown separately for each ROI.

Mono button: Change between color and monochrome display of the intensity time diagrams.

Area button: Display of the area of the ROI in the intensity time diagram, depending on the set threshold values. Area measurements of very small areas (< 10 pixels) give only approximate values.

Mean button: Display of the mean values of the relevant ROI in the intensity time diagram.

Ch1 / Ch3 / Ch4 button: Selection of the channel to be used.
Threshold low slider: The intensity values below threshold are not displayed for the Area function.

Threshold high slider: The intensity values above threshold are not displayed for the Area function.

Buttons for Table functions:

Copy Table button: The table of intensity values is copied to the clipboard.

Show Table button: The table of intensity values is displayed on the bottom left of the Image Display window.

Save Table button: The table of intensity values can be stored as a text file.
5.13.27 Additional Display Modes in Lambda Mode

The following display modes of a Lambda Stack are available:

- Display - Coded
- Display - Max
- Display - Mean

![Image Display window of a Lambda Stack, Display - Mean activated](image)

Fig. 5-289 Image Display window of a Lambda Stack, Display - Mean activated
5.13.27.1 Display - Coded

This function allows to
- display a Lambda Stack of images in a coded color view. A color palette is automatically assigned to the individual images which displays the spectral color of the most intense signal of a Lambda Stack

The settings of Chan, Zoom, Slice and Contr apply. The settings of Palette do not apply.

Click on Coded will be immediately effective.

5.13.27.2 Display - Max

This function allows to
- display a Lambda Stack of images in a maximum intensity projection.

The settings of Chan, Zoom, Slice, Contr and Palette apply.

Click on Max will be immediately effective.
5.13.27.3 Display - Mean

This function allows to
- display the intensity Lambda diagram (mean intensity in user defined ROIs over Lambda)
- use Lambda Stack, Lambda Stack time series, Lambda Stack Z series and Lambda Stack (Z+time) series as input
- show the intensity values in table form and copy table to clipboard or save as text file
- show separate diagrams for each ROI or all in one diagram
- generate unmixed multi channel images

The settings of Chan, Zoom, Slice, Contr and Palette apply. The settings of Overlay do not apply.

Click on Mean will display the Mean of ROIs toolbar. Any changes done with this toolbar are effective immediately. The content of the overlay plane is temporarily deleted while the toolbar is displayed.

The Mean of ROIs toolbar contains the following function elements:

ROIs selection box: Display of the ROIs used during scanning of the time series and of the other ROIs available in the system.

Add button: Opens the Add ROI List window for the storage of changed or newly defined ROIs under a new name.

Remove button: Deletes the selected ROI from the ROIs selection box.

ROI data: Display of the data of the ROI selected from the ROIs selection box. On deactivation of the check box of a ROI, its intensity values from the Intensity-Time diagram are not displayed.

Arrow button: Activation of the mouse button for resizing or movement of the ROI in the Image Display window.
Bezier button: Activates the Bezier figure drawing mode. The first click sets the starting point, each additional click adds a further line, a double-click on the starting point closes the figure and ends the procedure.

Circle button: Activates the circle drawing mode. Clicking and holding down the mouse button sets the center point; drag the diameter and release the mouse button to end the procedure.

Recycle bin button: All the ROIs to the image are deleted.

Rectangle button: Activates the rectangle drawing mode. Click and hold down the mouse button, drag the rectangle in any direction, release the mouse button to end the procedure.

Ellipse button: Activates the ellipse drawing mode. The first click sets the center point, the displayed line permits the determination of the first dimension, the second click sets the first dimension, the second dimension and the rotation direction can then be determined; the third click sets the second dimension and the direction and ends the procedure.

Polyline button: Activates polyline drawing mode. The first click sets the starting point, each additional click adds a further line, a double-click on the starting point closes the figure and ends the procedure.

Crosshair button with user-defined spot size for Lambda Stacks.

Line button: This button allows you to determine the line thickness of the ROI outline.

Color / Auto button: One color from the list of colors can be assigned to all ROIs. When Auto is pressed, the outlines of all ROIs are automatically colored differently.
Buttons for Image display:

- **Single** button: Displays only a single slice out of a Lambda Stack.
- **Coded** button: Displays the Lambda Coded mode (see chapter 5.13.27.1).
- **Max** button: Displays the Lambda Max mode (see chapter 5.13.27.2).

Buttons for diagram display:

- **1** button: Intensity values for ROIs and channels are shown in one diagram over Lambda.
- **ROI** button: Intensity values are shown separately for each ROI over Lambda.
- **2.5 D** button: 3D graph of intensity, wavelength and time of ROIs in Lambda Stacks.

Mono button: Change between color and monochrome display of the intensity time diagrams over Lambda.
Buttons for Table functions:

- **Copy Table** button: The table of intensity values over Lambda is copied to the clipboard.
- **Show Table** button: The table of intensity values over Lambda is displayed on the bottom left of the Image Display window.
- **Save Table** button: The table of intensity values over Lambda can be stored as a text file.

The toolbar below the intensity Lambda diagram has the following functions:

- **ChS1 button / slider**: Selection of a wavelength range (use the sliders) assigned with the spectral channel ChS1. This assignment can be used for scanning (when **Apply to hardware** is pressed, see **Config Control**) and/or for extracting a single or multichannel image from the Lambda Stack (when **Extract channels** is pressed). Clicking on the color box in the ChS buttons opens the color selection box and allows a new color assignment to be made for this channel.

- **Channel + / − button**: Add (+) or reduce (-) the number of channels displayed and available for assignment. Up to 8 channels labeled ChS1, ChS2, ChS3 ... ChS8 are available.

- **Extract channels** button: Generates a new image or multicolor images based on the settings made in the ChS1, ChS2, ChS3 ... ChS8 buttons. Two or more Lambda channels are binned to form the channels ChS1 ... 8. The generated image is displayed in a new Image Display window and is no longer a Lambda Stack of images.

- **Linear Unmixing** button: Performs the unmixing with the selected spectra.

- **Apply to hardware** button: Sets the parameters for the META detector used in binning mode as specified in the settings ChS1, ChS2, ChS3 ... ChS8. See **Single Track** and **Multi Track** in **Config Control** for the effect of the action. The Lambda Stack setting is not affected by this action.

- **Save to spectra DB** button: The values of the intensity Lambda diagram are saved in a file (extension: *.rls) in the aim/macro/roi directory. Make sure to have displayed only data of single dyes in the intensity Lambda diagram when executing this function.
5.13.27.4 Functionality for Emission Fingerprinting

Extract Channels
- Sum or mean signals from selected detector elements
- Autoscaling of output channels (individually)

Linear Unmixing
- Autoscaling of output channels
- Generate an additional "Channel with Residuals" -> pixel-by-pixel display the difference between fit and original data (for the channel of the Lambda Stack that shows the greatest deviation)
- Ignore negative results
- Ask for ROI characterizing background spectra before Linear Unmixing

Context menu
- **Spectra Display** with option **Normalize** (right mouse click into spectra graph)
- Deselect of individual channels in Lambda Stack affects:
 - Display in Lambda Coded and Lambda max modes, if Chan button in Select toolbar activated
 - Linear unmixing; deselected channels are not included

Fig. 5-292 Channels toolbar

- Spectra Database with subfolders

Fig. 5-293 Subfolder of Spectra Database
5.13.27.5 Automatic Component Extraction

The use of this function permits the automatic search for the individual reference spectra in a lambda stack.

(1) Open / Close the Mean of ROI window

- Click on the Mean of ROI button in the image display window.
- Click on another button to select a different function.

![Image Display window of a Lambda Stack, Display - Mean activated](image-url)
(2) **Function description**

ACE button
Opens the component number window; after selecting an appropriate number of labels in your sample, press OK.

Spectra checkboxes
Select required spectra. ACE generated spectra and interactively selected spectra can be mixed here.

Drawing Tools
For interactive search and selection of spectra in the image display window.

Linear Unmixing button
Performs the unmixing with the selected spectra.

- Select number of dyes present.
- Click **OK**.
- View results in graph.

Restriction:
Little to moderate spatial overlap of emission signals

Benefit:
Solution for Emission Fingerprinting in cases where reference spectra are not accessible via single-labeled controls

Fig. 5-295 **Automatic Component Extraction function**
5.14 Image Optimization

5.14.1 Single Channel

Described below is the example of the acquisition of an image, using an excitation wavelength of 543 nm and a fluorescence emission range above 560 nm. The HFT 488/543 is used as the main dichroic beam splitter.

Let the specimen be a thin section through a stem of Convallaria majalis (Lily-of-the-Valley). The description applies to the use of the Axioplan 2 imaging MOT microscope, and analogously also to the Axiovert 200 M.

5.14.1.1 Requirements

- The suitable laser is switched on.
- The specimen has been positioned and focused for scanning.
- Click on the LSM button in the Acquire subordinate toolbar of the Main menu. The tube slider on the microscope tube is in the LSM position (only Axioplan 2 imaging MOT) and the LSM button is activated.
- Click on the Config button in the Acquire subordinate toolbar of the Main menu.
 - This opens the Configuration Control window.
- Click on the Single Track button.
- Click on the Ch3 icon and assign a color to Channel 3 in the Channel Color Selection window. Activate channel 3 via check box.
- Click on the icon of emission filter 3 (before Ch3) and select the LP 560 filter.
- If required, deactivate all the other channels (Ch5, Ch2, 4, monitor diode, transmission, R1-2) via check box.
- Click on the icon of the main dichroic beam splitter and select HFT 488/543.

Fig. 5-296 Configuration Control window
• Click on the icon, activate the 543 nm laser line and click on Line Active. If required, deactivate other laser lines which are not needed.

• Use the Transmission slider to set the laser intensity to approx. 30 % at first.

Fig. 5-297 Excitation panel

The Beam Path and Channel Assignment panel displays the current configuration loaded.

The set laser intensity must be subsequently optimized for the current situation via the Transmission slider.

For overlaying fluorescence and transmitted-light images, click on the ChD (Transmission) button in the Beam Path and Channel Assignment panel.

The transmitted light PMT photomultiplier will be activated.

Of course, all other transmitted light applications like

- phase contrast
- differential interference contrast (DIC)
- polarization contrast (Pol)
- darkfield

can also be performed.

For the generation of images in reflection, the main dichroic beam splitter must be a neutral-density filter.

Standard equipment contains a neutral-density filter with a division ratio of 80 to 20 % (at 543 nm).
• In the **Main** menu click on the **Scan** button in the **Acquire** subordinate toolbar.
 - This opens the **Scan Control** window.

• Click on the **Mode** button.

• For a frame scan, click on the **Frame** button.

• On the **Objective Lens & Image Size** panel, select Objective and Frame size for the scan (e.g. X 512 / Y 512 scan).

• On the **Speed** panel, enter a scanning speed of 7, for example, to start with.

• Start with the following settings on the **Pixel Depth, Scan Direction & Scan Average** panel:
 - Data depth: 8 bits
 - Scan direction: unidirectional
 - Average: Number: 1

• On the **Zoom, Rotation & Offset** panel, set a zoom of 1 and a rotation of 0.

Using the **Fast XY** button is a convenient way of creating an overview scan.
• Click on the **Channels** button.
 - This displays the preset parameters of the configuration loaded.

• Click on the **Find** button. Make sure to position the slider correctly. Then scan while the slider is in the LSM position.
 - This starts the scanning process.
 - The image is seen to build up gradually in a new window.

 Function **Find** produces images of different brightness for different scan speeds.

Fig. 5-300 Scan Control window (Channels)
As a rule, the first scanned image (Pre-Scan) is not ideal, since the photomultiplier is not matched to the light output. More often than not, the screen image is dull and needs subsequent optimization.
5.14.1.2 Pinhole / Detector Gain / Ampl. Offset / Ampl. Gain

- In the Scan Control window, click on the Cont. button (see Fig. 5-300).
 - This starts a continuous scan.
- Use the Pinhole slider to set the pinhole diameter in the Scan Control window under Channels.
 - The pinhole diameter should be so small that there is still enough variation for the setting of the detector gain and that sufficient image information is still available. 1 Airy is a good value to enable a confocal fluorescence XY-image to be obtained.
 - A small pinhole diameter will increase the depth of focus, but reduce the light intensity received by the PMT photomultiplier (for reflection mode confocal images start with a pinhole value of 0.5 Airy Units).
 - The influence of the pinhole diameter on image creation is shown by the example in Fig. 5-302. The entire image was first scanned with too large a pinhole diameter. The pinhole diameter was then optimized for a defined ROI. This considerably improved the display of the specimen structures.
• Click on the **Palette** button in the **Select** image processing toolbar.
 - This opens the **Color Palette** window.

• In the **Color Palette List** panel, click on the **Range Indicator** item.
 - The scanned image appears in a false-color presentation.

If the image is too bright, it appears red on the screen.
If the image is not bright enough, it appears blue on the screen.

- On the Channel Settings panel of the Scan Control window, set the PMT (photomultiplier) gain with the Detector Gain slider.
 - The image should not have more than a trace of red.
 - This adjustment is very sensitive. Try using the left and right arrows to make the adjustment instead of dragging the slider bar.

- To adjust the black level (background), use the Ampl. Offset slider so that areas without picture content just show a trace of blue.

- If necessary, re-amplify brightness with the Ampl. Gain slider.

 Do not change the Ampl. Gain setting unless the settings made so far are insufficient for image optimization.

- In the Color Palette List panel of the Color Palette window, click on No Palette.
 - This deselects the Range Indicator and activates the new presentation.

- In the Scan Control window, click on the Stop button.
 - This stops the continuous scan.

 If you use the Range Indicator for image optimization, it may happen that the ranges marked in the Range Indicator will vary when the channel color is changed.
5.14.1.3 Scan Speed, Scan Average and Pixel Depth

The signal-to-noise ratio can be substantially improved by reducing the scanning speed to an acceptable level and averaging over several scans (i.e. with an average Number greater than 1 for the Mean average Method in the Scan Control window).

- Use the Scan Speed slider in the Speed panel to set the slowest acceptable scanning speed.
 - The corresponding pixel scanning time (Pixel Time) and the total scanning time (Scan Time) are shown in the dialog box.

- In the Number text box of the Pixel Depth, Scan Direction & Scan Average panel enter the number of measurements to be averaged.

Image optimization can be effected much faster if you select a smaller frame, since less data have to be processed.

The greater the number of averages selected for Mean average Method, the better the image quality will be; the scanning time will be prolonged accordingly.
5.14.2 Multiple-channel

5.14.2.1 Requirements

- The suitable lasers are on.
- The specimen has been positioned and focused for scanning.
- Click on the **LSM** button in the **Acquire** subordinate toolbar of the **Main** menu. The tube slider on the microscope tube is in the **LSM** position (only Axioplan 2 imaging MOT) and the **LSM** button is activated.

In the following example, 2 Channels shall be activated for the scanning procedure: one for 488 nm using emission filter BP 505-530 and one for 543 nm with LP 560. HFT 488/543 is used as the main dichroic beam splitter, and NFT 635 VIS and NFT 545 as the secondary dichroic beam splitter.

- In the **Acquire** subordinate toolbar, click on the **Config** button.
 - This opens the **Configuration Control** window.

- Click on the **Single Track** button.
- Activate (in the same way as for the single channel, see page 5-351) channel 2 and channel 3 (Ch2, Ch3), the indicated emission filters and the main and secondary dichroic beam splitter for the scanning procedure.
 - The configuration loaded is displayed in the **Beam Path and Channel Assignment** panel.
- Click on the **Scan** button in the **Acquire** subordinate toolbar of the **Main** menu.
 - This opens the **Scan Control** window.
- In the **Scan Control** window, set the parameters in the same way as described for single-channel presentation.
- Click on the **Find** button in the **Scan Control** window.
 - This starts the scanning process. The scanned image appears in a separate window.
As a rule, the first scanned image (Pre-Scan) is not ideal, since the photomultiplier is not matched to the light output. More often than not, the screen image is dull and needs subsequent optimization.

- Click on the **Channels** button in the **Scan Control** window.
 - This opens the Channel Settings and Excitation of Track panels.
 - The channels used are color-highlighted.

5.14.2.2 **Image Optimization**

The image optimization processes
- setting of pinhole diameter
- Detector Gain / Ampl. Offset / Ampl. Gain
- Scanning speed and Average
must be carried out separately for each channel used (see section 5.14.1 **Single Channel**, page 5-351).

For the optimum setting of the single channels, **Split xy**-display must be selected in the **Image Display** window to enable the direct viewing of the separate images of the relevant channels.

- Click on the **Cont.** button in the **Scan Control** window.
 - This starts a continuous scan.
• Click on the **Split xy** button in the **Image Display** window toolbar.
 - This displays the separate images scanned in the channels and the composite (overlay) image.

• Now click on the **Ch2** button in the **Channel Settings** panel to optimize Channel 1. Optimization is performed in the same way as for the single channel and can be monitored online in the relevant separate image of the channel.

• Then optimize the second channel by clicking on the relevant button (**Ch3**) in the **Channel Settings** panel of the **Scan Control** window.

Now effect image optimization as explained for the single-channel mode, but separately for each channel.

• Now click on the **xy** button of the **Display** toolbar.
 - The composite scan image of two channels is presented in a common window.

![Fig. 5-310 Scan Control and Image Display windows](image.png)

> Image optimization can be effected much faster if you select a smaller frame, since less data have to be processed.
5.15 Shut-Down Procedure

Never shut down the computer by its main switch while your LSM program is still active, or else you will lose the currently set operating parameters and the images just scanned.

In the Settings for user dialog window, which can be activated with the Options / Settings buttons, activate Laser off or Exit in the Shutdown tab. The lasers will then automatically be switched off when you exit the LSM program.

5.15.1 Exiting the LSM Program

- Close all open windows of the LSM program by clicking on the closing icon in the top right corner of each window.
 - This closes the respective window and removes the respective icons from the taskbar.
 - After all dialog windows have been closed, the LSM 510 Switchboard window appears.

- Click on the Exit button.
 - This terminates the LSM program.
 - The monitor screen shows the desktop of the WINDOWS NT operating system.
5.15.2 Shut Down the WINDOWS Operating System

- Move the cursor to the bottom margin of the screen.
 - This opens the taskbar containing the **Start** button.
- Click on the **Start** button of the taskbar.
 - This opens a pop-up menu.
- Click on the **Shut Down** item.

![Fig. 5-312 Start menu](image)

Taskbar
This opens the **Shut Down Windows** window, in which you can select between **Shut down**, **Restart** and **Login**.

- Unless already set by default, click on **Shut down the computer?**
- Click on the **Yes** button.

The screen now displays the message **Shutdown in Progress - Please wait while the system writes unsaved data to the disk.**

About 20 seconds after WINDOWS NT has been run down, the **Shutdown Computer** window appears which tells you that you can now turn off your computer.

5.15.3 Turning Power Off

Please bear in mind that a cooling phase of at least 5 minutes is required between switching off of the laser via the software and switching off of the entire system via the REMOTE CONTROL main switch or the Power Supply switch of the Enterprise UV laser.

Throw the REMOTE CONTROL main switch and the power supply switch of the Ar Laser to position "OFF" after 5 minutes.

- This puts your LSM 510 microscope system, including the computer, off power.
5.16 Software and Hardware Options

This section describes optional software and hardware configurations. Depending on your configuration, the content of dialogue and function may differ.

5.16.1 Software

The following software packages for Release 3.0 are available:
- Software "Physiology evaluation"
- Software "Topography evaluation"
- Software "Macro Recorder and Editor"
- Software "3D for LSM"
- Software "Multiple Time Series"
- Software "Image VisArt"
- Software "Deconvolution"
- Software "StitchArt"

If your configuration does not include the "Physiology evaluation" software package, the following functions are not available:
- Mean of ROI scan button in Time Series Control
- Mean of ROI button in the Image Display window

If your configuration does not include the "Topography evaluation" software package, the following functions are not available:
- Topo button in the Image Display window after acquisition of image stacks

If your configuration does not include the "Macro Recorder and Editor" software package, the following functions are not available:
- New, Save and Save as buttons in the Macro Control window
- Edit, Step, Delete, Editor buttons in the Macro Control window

If your configuration does not include the "3D for LSM" software package, the following separate application is not available:
- 3D for LSM
If your configuration does not include the "Multiple Time Series" software package, the following function is not available:
- Macro: "Advanced Time Series"

If your configuration does not include the "Image VisArt" software package, the following function is not available:
- **3D** button in the **Image Display** window

If your configuration does not include the "Deconvolution" software package, the following functions are not available
- **DCV Settings** button in the **Ortho** function of the **Image Display** window
- **DCV** button in the **Process** menu

If your configuration does not include the "StitchArt" software package, the following function is not available:
- Macro: "StitchArt"
5.16.2 Hardware

Depending on whether the following hardware components are available or not, the content of the screens may differ:

- HRZ 200 fine focusing stage
- Piezo objective focusing device
- X-Y scanning stage DC 4×4 or DC 100×90, each with MCU 28
- Stands: Axioplan 2 imaging MOT, Axiovert 100 M, Axioskop 2 FS MOT, Axiovert 200 M
- Depending on the configuration the scan head equipment may differ in filters, beamsplitters and the number of photomultiplier
- Transmitted-light PMT
- Monitor diode
- Programmable AOTF

If your configuration does not include the HRZ 200 fine focusing stage, the following functions are not available:

- **Hyperfine Z Sectioning** in the Z Stack function in the Scan Control window
- **HRZ** parameters in the Stage and Focus Control window

If your configuration does not include the X-Y scanning stages DC 4×4 or DC 100×90, each with MCU 28, the following functions are not available:

- **Stage Position** and Tile Scan functions in the Stage and Focus Control window

Depending on the used microscope stand: Axioplan 2 MOT, Axioplan 2 imaging MOT, Axiovert 100 M, Axioskop 2 FS MOT or Axiovert 200 M, the following dialogue and available functions may differ:

- Context and accessibility of the Microscope Control window

If your configuration does not include scan head META, monitor diode and/or transmitted light PMT, the following functions may differ:

- Context and accessibility of the Config Control window

If your configuration does not include programmable AOTF, the following functions are not available:

- **Laserline** in the Config Control window and **Channels** in the Scan Control window

If your configuration does not include an AxioCam, the following functions are not available:

- **Camera** in the Config Control window, Scan Control window
5.17 System Configuration Tool

Transparent configuration of system hardware
Start by double-click on the ConfTool.exe in directory /AIM

Configures:
- Scanning stages, focus accessories, AxioCam
- Microscope and microscope accessories (lamps, reflector cubes ...)
- Substitutes direct editing of system databases

Benefits:
- Fast and easy integration of new hardware
- Optional rotation/flip of scanned images according to image orientation in visual observation

Fig. 5-314 Configuration Tool menu
5.18 Courses on "How to Operate the System in an Optimized Way"

Carl Zeiss is offering training courses on how to operate the system in an optimized way.

Courses are held in our application center in Jena, Germany.
Courses are held in English or German language, respectively.

Check out

www.zeiss.de/lsm

for the latest dates and ask your Zeiss representative for a quotation on courses.