Bio 5312 Problem Set-2 Lohman

1. Consider the equilibrium

$M + X \Leftrightarrow MX$

If the standard state free energy change is $\Delta G^{\circ} = -14.2$ kcal/mol for a 1 M standard state at 25°C, for all components what is the standard state free energy change for a 1 mM standard state for all components?

2. Consider the protonation equilibrium

$M + H \Leftrightarrow MH$

If the standard state free energy change for this reaction is -9.0 kcal/mol for a 1M standard state at 25°C for all components, calculate the free energy change when both M and MH are 1M, but a pH of 7 is maintained?

3. A protein, P, has 10 sites for a ligand, L.

a.) How many different configurations of the protein can occur in which 4 ligands are bound?

b.) If L binds independently and identically to the 10 sites, with site binding constant κ , obtain an expression for the overall macroscopic binding constant, β_3 for the equilibrium

$$3L + P \iff PL_3$$

c.) Obtain an expression for the step-wise macroscopic binding constant, K_6 , for the equilibrium:

$$L + PL_5 \iff PL_6$$

d.) For a protein with **n** independent and identical binding sites, what is the value of the ratio of the step-wise macroscopic binding constants, K_1/K_n ?

4. A homo-tetrameric protein (identical subunits) has a square structure with four binding sites for a ligand X, one site per subunit without cooperativity. X binds to each subunit with a different site binding constant, κ_i . (i.e., κ_1 , κ_2 , κ_3 , κ_4).

- a.) Write expressions for the binding polynomial (molecular partition function) and <X> for this tetrahedral system in terms of:
- i. the overall or stoichiometric binding constants, β_i (i.e., β_1 , β_2 , β_3 and β_4) and the free ligand concentration, *x*.
- ii. the step-wise macroscopic binding constants, K_i (i.e., K_1 , K_2 , K_3 , K_4) and x.
- iii. the step-wise microscopic binding constant, k_i (i.e., k_1 , k_2 , k_3 , k_4) and x.
- iv. the site binding constants, κ_i (i.e., κ_1 , κ_2 , κ_3 , κ_4) and *x*.
- v. the site binding constants, if all $\kappa_i = \kappa$.
- b.) Obtain expressions for the macroscopic constants, β_i and K_i and the step-wise microscopic constants k_i in terms of κ_i .