**Bio 5312** Problem Set-3 Lohman January 29, 2016 **due Feb.5** 

1. The following equilibrium binding data ( $\langle X \rangle$  = moles of ligand bound per moles of total protein) were obtained for the binding of a ligand, X, to a protein. The titration data were obtained at a total protein concentration of 5  $\mu$ M.

| <u><x></x></u> |
|----------------|
| 0.40           |
| 0.48           |
| 0.56           |
| 0.71           |
| 0.84           |
| 1.05           |
| 1.20           |
| 1.46           |
| 1.77           |
| 2.10           |
| 2.58           |
| 3.07           |
| 3.55           |
| 3.92           |
| 3.95           |
| 4.0            |
| 3.98           |
|                |

a.) Plot these data in the following forms:  $\langle X \rangle$  vs.  $X_T$  and  $\langle X \rangle$  vs. log  $X_T$ .

b.) Use an "n independent and identical binding sites" model to analyze these data. Estimate the number of binding sites, n, and the equilibrium association constant, k, by simulating a series of theoretical binding isotherms (varying n and k) and comparing these to the experimental isotherm. **DO NOT use non-linear least squares to analyze the data in this exercise.** 

c.) The following set of data were obtained for the same system, under the same solution conditions, but at a total protein concentration of 10 nM. Using these data and the same "n independent and identical sites model", estimate the number of binding sites, n, and the equilibrium association constant, k, by simulating a series of theoretical binding isotherms (varying n and k) and comparing these to the experimental isotherm.

| $X_{T}$ [total ligand] (nM) | <u><x></x></u> |
|-----------------------------|----------------|
| 10                          | 0.27           |
| 13.3                        | 0.36           |
| 17.8                        | 0.44           |
| 23.7                        | 0.63           |
| 31.6                        | 0.76           |
| 42.1                        | 0.98           |
| 56.2                        | 1.2            |
| 75                          | 1.5            |
| 100                         | 1.75           |
| 133                         | 2.1            |
| 178                         | 2.35           |
| 237                         | 2.75           |
| 316                         | 2.95           |
| 421                         | 3.14           |
| 562                         | 3.3            |
| 750                         | 3.5            |
| 1000                        | 3.64           |

d.) Explain why one set of data has advantages for determining the equilibrium binding constants for this system and why one set of data is more useful for determining the stoichiometry (n)?

2. The intrinsic tryptophan fluorescence of a protein, P, decreases upon binding a ligand, X. The following two sets of titration data (percent fluorescence quenching *vs*. total ligand concentration) were collected for the binding of X to P at two different total protein concentrations.

|                | [total protein] =0.945 μM                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>enching</u> | total ligand concentration (M) Quenching                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.05           | 7.24 x 10 <sup>-8</sup>                                                                                                                                                                                                                 | 0.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.09           | 1.41 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.15           | 2.08 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.20           | 2.81 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.30           | 3.54 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.35           | 4.16 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.42           | 4.89 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.46           | 6.60 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.49           | 8.31 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.52           | 9.55 x 10 <sup>-7</sup>                                                                                                                                                                                                                 | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.57           | 1.12 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.615          | 1.32 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.65           | 1.54 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.67           | 1.78 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.70           | 1.99 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.73           | 2.18 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.795          | 2.69 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.82           | 3.16 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.835          | 4.27 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.85           | 5.01 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.87           | 7.08 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.88           | 8.91 x 10 <sup>-6</sup>                                                                                                                                                                                                                 | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | 1.26 x 10 <sup>-5</sup>                                                                                                                                                                                                                 | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | 1.58 x 10 <sup>-5</sup>                                                                                                                                                                                                                 | 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | 1.99 x 10 <sup>-5</sup>                                                                                                                                                                                                                 | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | $\begin{array}{l} \hline \text{enching} \\ 0.05 \\ 0.09 \\ 0.15 \\ 0.20 \\ 0.30 \\ 0.35 \\ 0.42 \\ 0.46 \\ 0.49 \\ 0.52 \\ 0.57 \\ 0.615 \\ 0.65 \\ 0.67 \\ 0.70 \\ 0.73 \\ 0.795 \\ 0.82 \\ 0.835 \\ 0.85 \\ 0.87 \\ 0.88 \end{array}$ | Itotal protein] =0.9tenchingtotal ligand concentration (M) 9 $0.05$ $7.24 \ge 10^{-8}$ $0.09$ $1.41 \ge 10^{-7}$ $0.15$ $2.08 \ge 10^{-7}$ $0.20$ $2.81 \ge 10^{-7}$ $0.30$ $3.54 \ge 10^{-7}$ $0.35$ $4.16 \ge 10^{-7}$ $0.42$ $4.89 \ge 10^{-7}$ $0.46$ $6.60 \ge 10^{-7}$ $0.46$ $6.60 \ge 10^{-7}$ $0.46$ $6.60 \ge 10^{-7}$ $0.52$ $9.55 \ge 10^{-7}$ $0.57$ $1.12 \ge 10^{-6}$ $0.615$ $1.32 \ge 10^{-6}$ $0.65$ $1.54 \ge 10^{-6}$ $0.67$ $1.78 \ge 10^{-6}$ $0.70$ $1.99 \ge 10^{-6}$ $0.835$ $4.27 \ge 10^{-6}$ $0.835$ $5.01 \ge 10^{-6}$ $0.88$ $8.91 \ge 10^{-6}$ $0.88$ $8.91 \ge 10^{-5}$ |

Analyze these data to determine the correlation between protein fluorescence quenching and <X> and estimate the total number of sites for binding of X to P.

3. The following equilibrium binding data were collected for a ligand, X, binding to a protein, P (at 1  $\mu$ M total protein concentration). Determine a binding model that provides a good description of this ligand-protein binding system. Choose between an n-independent and identical sites model and an n-independent and non-identical sites model. Use non-linear least squares analysis to estimate the number of sites as well as the equilibrium binding constant(s) for this system along with the 68% confidence limits.

| <u><x></x></u> | $\underline{Xtotal}\left(\mu M\right)$ |
|----------------|----------------------------------------|
| 0.127          | 0.10                                   |
| 0.131          | 0.142                                  |
| 0.163          | 0.203                                  |
| 0.303          | 0.289                                  |
| 0.450          | 0.411                                  |
| 0.648          | 0.585                                  |
| 0.70           | 0.833                                  |
| 1.02           | 1.19                                   |
| 1.10           | 1.69                                   |
| 1.27           | 2.40                                   |
| 1.44           | 3.42                                   |
| 1.62           | 4.87                                   |
| 1.69           | 6.93                                   |
| 1.85           | 9.87                                   |
| 1.82           | 14.0                                   |
| 1.87           | 20.0                                   |

4. A protein, P, binds multiple ligands, X, without affecting its oligomeric state, although no spectroscopic signal change accompanies binding. However, the protein can be labeled fluorescently to form a modified version, F, which displays a fluorescent enhancement upon binding X. Shown below are plots of the normalized fluorescent enhancement, E, (normalized per F<sub>tot</sub>) obtained from two titrations:

Curve (I) is a titration of the fluorescent protein, F (at total concentration,  $F_T = 10 \ \mu M$ ) as a function of total ligand concentration,  $X_{tot}$ .

Curve (II) is a titration of a mixture of F (at the same total concentration as in I,  $F_{tot}$ = 10 µM) and the non-fluorescent wt protein, P (at total concentration,  $P_{tot}$ = 50 µM).



a) From these data calculate the value of  $\langle X \rangle_{P}$  = average moles of ligand bound per mole of wt protein for the point at a Fluorescent Enhancement of 0.35 in titration **II**.

b) Briefly describe the basis for your calculation. This should include equations.