1. A homo-tetrameric protein (identical subunits) has four binding sites for a ligand X , one site per subunit. X binds to each subunit with a site binding constant, к. Subsequent ligands bind with cooperativity. The subunits of the tetramer can be viewed as forming a tetrahedron such that cooperative interactions can occur between any pair of sites, with cooperative interaction constant, σ.

a.) Write the binding polynomial for this system and obtain an expressions for < X>.
b.) Obtain expressions for the step-wise microscopic constants k_{i} in terms of κ and σ.
c.) The Figure below shows a plot of $\log \sigma$ vs. $\log Y$, where Y is a second ligand that can also bind to the tetramer. Is there linkage between the binding of X and Y? If so, what type?

2. Protein, P, has one site to which three ligands, A, B, and C, can bind competitively with equilibrium constants $\mathrm{k}_{\mathrm{A}}, \mathrm{k}_{\mathrm{B}}$ and k_{C}, respectively.
a.) Write an expression for the Binding Polynomial for this system.
b.) What type of linkage describes the binding of ligands A and C?
c.) Obtain an expression for the average moles of B bound per protein molecule.
3. A protein exists in equilibrium between two conformations, A and B , where, $\mathrm{K}_{\mathrm{obs}}=[\mathrm{B}] /[\mathrm{A}]$.

$$
\mathrm{A} \stackrel{\mathrm{~K}_{\text {obs }}}{\leftrightarrow} \quad \mathrm{B}
$$

A ligand, X, can bind to both forms of the protein and the binding isotherms ($<X>$ vs. free ligand concentration, x) for X binding to each form of the protein are shown below.

Construct a qualitative plot of $\left(\operatorname{dlog} \mathrm{K}_{\mathrm{obs}} / \mathrm{d} \log [\mathrm{x}]\right)$ vs. $[\mathrm{x}]$. Explain your answer including the equations that you used to construct this plot.
4. A ligand, L, can bind to three sites on a protein with site binding constants, κ_{1}, κ_{2}, and κ_{3}. Cooperativity can exist when sites 2 and 3 are occupied, with cooperativity parameter, c.

Given $\kappa_{1}=1 \times 10^{5} \mathrm{M}^{-1}$ and the values of the equilibrium constants shown below (at $20^{\circ} \mathrm{C}$), determine the standard state free energy change, $\Delta \mathrm{G}_{3}{ }^{\circ}$ for binding of X to site 3 .

