Bio5312 Problem Set-4

1. A homo-tetrameric protein (identical subunits) has four binding sites for a ligand X, one site per subunit. X binds to each subunit with a site binding constant, κ . Subsequent ligands bind with cooperativity. The subunits of the tetramer can be viewed as forming a tetrahedron such that cooperative interactions can occur between any pair of sites, with cooperative interaction constant, σ .

a.) Write the binding polynomial for this system and obtain an expressions for $\langle X \rangle$.

b.) Obtain expressions for the step-wise microscopic constants $k_{\rm i}$ in terms of κ and $\sigma.$

c.) The Figure below shows a plot of log σ vs. log Y, where Y is a second ligand that can also bind to the tetramer. Is there linkage between the binding of X and Y? If so, what type?

2. Protein, P, has one site to which three ligands, A, B, and C, can bind competitively with equilibrium constants k_A , k_B and k_C , respectively.

a.) Write an expression for the Binding Polynomial for this system.

b.) What type of linkage describes the binding of ligands A and C?

c.) Obtain an expression for the average moles of B bound per protein molecule.

3. A protein exists in equilibrium between two conformations, A and B, where, $K_{obs} = [B]/[A]$.

$$\begin{array}{ccc} & K_{obs} \\ A & \nleftrightarrow & B \end{array}$$

A ligand, X, can bind to both forms of the protein and the binding isotherms (<X> vs. free ligand concentration, x) for X binding to each form of the protein are shown below.

Construct a qualitative plot of $(dlogK_{obs}/dlog[x])$ vs. [x]. Explain your answer including the equations that you used to construct this plot.

4. A ligand, L, can bind to three sites on a protein with site binding constants, κ_1 , κ_2 , and κ_3 . Cooperativity can exist when sites 2 and 3 are occupied, with cooperativity parameter, c.

Given $\kappa_1 = 1 \ge 10^5 \text{ M}^{-1}$ and the values of the equilibrium constants shown below (at 20°C), determine the standard state free energy change, ΔG_3° for binding of X to site 3.

