Category: Galletto Publications

Dr. Galletto’s Publications

Pif1, RPA and FEN1 modulate the ability of DNA polymerase δ to overcome protein barriers during DNA synthesis

Melanie A. Sparks, Peter M. Burgers, & Roberto Galletto (2020). “Pif1, RPA and FEN1 modulate the ability of DNA polymerase δ to overcome protein barriers during DNA synthesis” J Biol Chem. 2020 Nov 20;295(47):15883-15891. doi: 10.1074/jbc.RA120.015699. Epub 2020 Sep 10. (Abstract)

The telomere-binding protein Rif2 and ATP-bound Rad50 have opposing roles in the activation of yeast Tel1ATM kinase.

Hailemariam S., De Bona P., Galletto R., Hohl M., Petrini J.H., & Burgers P.M. (2019). “The telomere-binding protein Rif2 and ATP-bound Rad50 have opposing roles in the activation of yeast Tel1ATM kinase.” J Biol Chem. 2019 Oct 22. pii: jbc.RA119.011077. doi: 10.1074/jbc.RA119.011077. [Epub ahead of print] (Abstract)

Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes.

Sparks M.A., Singh S.P, Burgers P.M., & Galletto R. (2019). “Complementary roles of Pif1 helicase and single stranded DNA binding proteins in stimulating DNA replication through G-quadruplexes.” Nucleic Acids Res. 2019 Jul 24. pii: gkz608. doi: 10.1093/nar/gkz608. [Epub ahead of print] (Abstract)

A stable tetramer is not the only oligomeric state that mitochondrial single-stranded DNA binding proteins can adopt.

Singh S.P., Kukshal V., & Galletto R. (2019). “A stable tetramer is not the only oligomeric state that mitochondrial single-stranded DNA binding proteins can adopt.” J Biol Chem. 2019 Mar 15;294(11):4137-4144. doi: 10.1074/jbc.RA118.007048. Epub 2019 Jan 7. (Abstract)

Shelterin Components Modulate the Phase-Separation Propensity of Telomeres

Andrea Soranno, Jeremias Incicco, Paolo De Bona, Eric Tomko, Eric Galburt, & Roberto Galletto. (2019). “Shelterin Components Modulate the Phase-Separation Propensity of Telomeres” Biophysical Journal. Volume 116, Issue 3, Supplement 1, 15 February 2019, Pages 467a-468a. (Abstract)

Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures.

Dahan D., Tsirkas I., Dovrat D., Sparks M.A., Singh S.P., Galletto R., & Aharoni A. (2018). “Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures.” Nucleic Acids Res. 2018 Dec 14;46(22):11847-11857. doi: 10.1093/nar/gky1065. (Abstract)

The signature motif of the Saccharomyces cerevisiae Pif1 DNA helicase is essential in vivo for mitochondrial and nuclear functions and in vitro for ATPase activity.

Geronimo C.L., Singh S.P., Galletto R., & Zakian V.A. (2018). “The signature motif of the Saccharomyces cerevisiae Pif1 DNA helicase is essential in vivo for mitochondrial and nuclear functions and in vitro for ATPase activity.” Nucleic Acids Res. 2018 Sep 19;46(16):8357-8370. doi: 10.1093/nar/gky655. (Abstract)

The mitochondrial single-stranded DNA binding protein from S. cerevisiae, Rim1, does not form stable homo-tetramers and binds DNA as a dimer of dimers.

Singh S.P., Kukshal V., De Bona P., Antony E., & Galletto R. (2018). “The mitochondrial single-stranded DNA binding protein from S. cerevisiae, Rim1, does not form stable homo-tetramers and binds DNA as a dimer of dimers.” Nucleic Acids Res. 2018 Aug 21;46(14):7193-7205. doi: 10.1093/nar/gky530. (Abstract)