Category: Ellenberger Publications

Dr. Ellenberger’s Publications

Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor

Brosey C.A., Ho C., Long W.Z., Singh S., Burnett K., Hura G.L., Nix J.C., Bowman G.R., Ellenberger T., & Tainer J.A. (2016). “Defining NADH-Driven Allostery Regulating Apoptosis-Inducing Factor” Structure. 2016 Dec 6;24(12):2067-2079. doi: 10.1016/j.str.2016.09.012. Epub 2016 Nov 3. (Abstract)

Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

Kukshal V., Kim I.K., Hura G.L., Tomkinson A.E., Tainer J.A., & Ellenberger T. (2015). “Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.” Nucleic Acids Res. 2015 Aug 18;43(14):7021-31. doi: 10.1093/nar/gkv652. Epub 2015 Jun 29. (Abstract)

14-3-3 proteins restrain the Exo1 nuclease to prevent overresection.

Chen X., Kim I.K., Honaker Y., Paudval S.C., Koh W.K., Sparks M., Lis S., Piwnica-Worms H., Ellenberger T., & You Z. (2015). “14-3-3 proteins restrain the Exo1 nuclease to prevent overresection. J Biol Chem. 2015 May 8;290(19):12300-12. doi: 10.1074/jbc.M115.644005. Epub 2015 Apr 1. (Abstract)

The N-Terminal Domain of SIRT1 Is a Positive Regulator of Endogenous SIRT1-Dependent Deacetylation and Transcriptional Outputs.

Ghisays F., Brace C.S., Yackly S.M., Kwon H.J., Mills K.F., Kashentseva E., Dmitriev I.P., Curiel D.T., Imai S.I., & Ellenberger T. (2015). “The N-Terminal Domain of SIRT1 Is a Positive Regulator of Endogenous SIRT1-Dependent Deacetylation and Transcriptional Outputs.” Cell Rep. 2015 Mar 10. pii: S2211-1247(15)00182-5. doi: 10.1016/j.celrep.2015.02.036. (Abstract)

A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase.

Kim I.K., Stegeman R.A., Brosey C.A., & Ellenberger T. (2015). “A quantitative assay reveals ligand specificity of the DNA scaffold repair protein XRCC1 and efficient disassembly of complexes of XRCC1 and the poly(ADP-ribose) polymerase 1 by poly(ADP-ribose) glycohydrolase.” J Biol Chem. 2015 Feb 6;290(6):3775-83. doi: 10.1074/jbc.M114.624718. Epub 2014 Dec 4. (Abstract)

Discrete interactions between bacteriophage T7 primase-helicase and DNA polymerase drive the formation of a priming complex containing two copies of DNA polymerase.

Wallen J.R., Majka J., & Ellenberger T. (2013). “Discrete interactions between bacteriophage T7 primase-helicase and DNA polymerase drive the formation of a priming complex containing two copies of DNA polymerase.” Biochemistry. 2013 Jun 11;52(23):4026-36. doi: 10.1021/bi400284j. Epub 2013 May 31. (Abstract)

The interaction between polynucleotide kinase phosphatase and the DNA repair protein XRCC1 is critical for repair of DNA alkylation damage and stable association at DNA damage sites.

Della-Maria J., Hegde M.L., McNeill D.R., Matsumoto Y., Tsai M.S., Ellenberger T., Wilson D.M., Mitra S., & Tomkinson, A.E. (2012). “The interaction between polynucleotide kinase phosphatase and the DNA repair protein XRCC1 is critical for repair of DNA alkylation damage and stable association at DNA damage sites.” J Biol Chem. 2012 Nov 9;287(46):39233-44. doi: 10.1074/jbc.M112.369975. Epub 2012 Sep 19. (Abstract)

Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element.

Kim I.K., Kiefer J.R., Ho C.M., Stegeman R.A., Classen S., Tainer J.A., & Ellenberger, T. (2012). “Structure of mammalian poly(ADP-ribose) glycohydrolase reveals a flexible tyrosine clasp as a substrate-binding element.” Nat Struct Mol Biol. 2012 May 20;19(6):653-6. doi: 10.1038/nsmb.2305. (Abstract)